The Elephant in the Room: the Impact of Labor Obligations on Credit Markets*

Jack Favilukis,† Xiaoji Lin,‡ and Xiaofei Zhao§

January 26, 2017

Abstract We show that labor market frictions are first-order for understanding credit markets. Wage growth and labor share forecast aggregate credit spreads and debt growth as well as or better than alternative predictors. They also predict credit risk and debt growth in a cross-section of international firms. Finally, high labor share firms choose lower financial leverage. A model with labor market frictions and risky long-term debt can explain these findings, and produce large credit spreads despite realistically low default probabilities. This is because pre-committed payments to labor make other committed payments (i.e. interest) riskier.

1 Introduction

We study the impact of labor market frictions on credit markets. Our central finding is that labor market variables (wage growth or labor share) are first-order in accounting for variations in credit risk, debt growth, and financial leverage. This is true both in aggregate U.S. data, and in large, cross-country firm-level data. These findings are consistent with an equilibrium model featuring a risky credit market with long-term debt, and sticky wages. Intuitively, when wages are rigid, a negative economic shock leads to a rise in labor induced operating leverage, as wages fall too slowly and labor share rises. This labor leverage effect increases firms’ credit risk because pre-committed wage payments make interest payments

*We thank Andrew Atkeson, Frederico Belo, Jonathan Berk, Murillo Campello, Murray Carlson, Sergey Chernenko, Steven Davis, Andres Donangelo, Jin-Chuan Duan, Andrea Eisfeldt, Isil Erel, Lorenzo Garlappi, Bob Goldstein, Howard Kung, Kai Li, Philippe Mueller, Christopher Polk, Lukas Schmid, Elena Simintzi, Rene Stulz, Eric Swanson, Sheridan Titman, Andrea Vedolin, Mike Weisbach, Lu Zhang, and Stan Zin for helpful comments. We also thank seminar participants at CKGSB, Nanyang Technological University, National University of Singapore, PBC School of Finance at Tsinghua University, Singapore Management University, University of Hong Kong, University of Texas at Austin, the AFA 2015 annual meetings, 2015 Econometric Society World Congress, 2015 UBC Summer Finance Conference, 2016 Adam Smith Asset Pricing Workshop, 2016 City University of Hong Kong Finance Symposium, 2016 SFS Finance Cavalcade, and 2016 WFA meetings. We thank Moody’s for providing us the EDF data. All errors are our own.

†Sauder School of Business, University of British Columbia
‡Fisher College of Business, The Ohio State University
§Naveen Jindal School of Management, University of Texas at Dallas
riskier. Adjustment happens both in prices and quantities: in response to a negative shock, bond prices fall (yields rise) and firms issue less debt. Firms with higher labor leverage tend to have higher credit risk and lower financial leverage.

Empirically, we show that low wage growth and high labor share significantly forecast a high aggregate U.S. Baa-Aaa credit spread. A 1% decrease in wage growth (increase in labor share) is associated with a 15bp (11bp) increase in the credit spread, and the univariate R^2 of wage growth (labor share) is 0.28 (0.09). These findings are robust to inclusion of standard controls used in the literature, including financial leverage and market volatility. The same two labor market variables also forecast corporate debt growth, but with opposite signs. A 1% decrease in wage growth (increase in labor share) is associated with a 1.3% (0.4%) reduction in the aggregate quantity of U.S. corporate debt.

In the cross section, we show that firm-level labor market variables are important predictors of credit risk, as measured by the Moody-KMV expected default frequency (EDF) across a wide range of countries, including U.S., Canada, and major European and Asian Pacific countries. Again, these findings are robust to standard controls. More specifically, firms with lower labor expense growth rates (higher labor share) have higher future EDFs. As in aggregate data, these variables also forecast corporate debt growth, but with opposite signs. All of the aforementioned results are stronger for firms whose wages are more sticky, consistent with the interpretation that labor leverage affects credit risk. Additionally, firms with higher labor leverage tend to have lower financial leverage – the strikingly strong negative relationship between labor share and financial leverage is shown in Figure 2. Taken together, our results suggest that labor markets play a major role in driving both aggregate and cross-sectional variation in credit risk, corporate debt growth, and capital structure.

To understand this relationship, we solve a dynamic stochastic general equilibrium (DSGE) model with heterogeneous firms. In our model, the labor market is not frictionless – wage contracts are staggered, which prevents firms from immediately adjusting their labor expenses in response to new shocks. This causes wages to be sticky; as in the data, the wage process in our model is smoother than output, and is imperfectly correlated with output. This also causes labor leverage to matter for asset prices. On the financing side, firms issue long-term debt to pay for investment and labor expenses, and to reduce tax liability through interest deductions. Firms in the model trade-off financial leverage, and the labor leverage induced by sticky wages.

In the model, the predictability of labor market variables for the credit spread and debt growth arises endogenously due to the interaction between operating leverage and financial leverage. In economic downturns, productivity, output, and wages fall. However, because of labor market frictions, wages fall by less, causing an increase in labor share and in labor leverage. High expected payments to labor make firms more likely to default in bad times,

1EDF is a widely used measure of the probability that a firm will default over a specified period of time.
especially when the wage bill is relatively high. Thus, the model implies that labor share (positively) and wage growth (negatively) are natural predictors of credit risk. Similarly, at the firm level, firms which experience negative (positive) economic shocks endogenously have lower (higher) wage growth, and higher (lower) labor share, which then results in more (less) risky debt. Firms with high labor leverage then choose to issue less debt because credit risk caused by rigid wages is high.

Notably, the model with wage rigidity and corporate debt provides a coherent accounting of several major financial puzzles - the credit spread puzzle, the under-leverage puzzle, and the equity premium puzzle - in a unified framework. Specifically, the model produces a realistically large credit spread despite of low default probabilities, which is often referred as the credit spread puzzle (Huang and Huang (2012)). In our model, shocks to the growth rate of productivity are persistent, and households have Epstein and Zin (1989) utility, thus standard long run risk forces are present, as in Bansal and Yaron (2004), Kaltenbrunner and Lochstoer (2010), and Croce (2014). Because shocks are persistent, a negative shock today implies that consumption growth is likely to be low for many periods into the future. Such a shock is especially unpleasant because the intertemporal elasticity of substitution (IES) is above one, implying that households prefer early resolution of uncertainty. In this world, safe long-term debt is an especially good hedge, because it promises a long-term, stable interest payment. On the other hand, long-term corporate debt is especially risky, because firms are likely to default exactly when a long sequence of negative shocks leaves their revenues low relative to promised interest payments. This effect is magnified by wage rigidity, since after such a long sequence of low growth, not only are interest payments high relative to revenues, but payments to labor are relatively high too.

The model also produces a quantitatively realistic leverage ratio, despite zero explicit bankruptcy costs. This happens because long-term debt exacerbates the problem of debt overhang and under-investment. Firms with high financial leverage under-invest ex-post, and to avoid this, firms issue less debt ex-ante. The interactions of long-term debt, sticky wages, and long-run risk all strengthen the effect.

In addition to successfully replicating the observed predictability in credit spread, the model also produces a sizable equity premium and equity volatility. The equity premium and volatility are high in a model with wage rigidity, because without labor frictions, profits are too smooth and dividends may be countercyclical, which is counterfactual. Wage rigidity, through operating leverage, makes profits and dividends behave more like in the data. Thus, the residual claimants, such as debt and equity, are particularly risky in our model.

In addition to the specific economic question, we believe that our solution of a general equilibrium, heterogenous firm model with long-term wage and long-term debt contracts is,
in itself, an important methodological contribution. Models with defaultable long-term debt have only recently appeared in the sovereign default literature (Arellano and Ramanarayanan (2012), Chatterjee and Burcu (2012)), though doing this with heterogenous firms requires additional complexity.

Literature review The macroeconomic literature on wages and labor is quite large, although only more recently has this literature begun to relate to financial economics. On the other hand, financial economists have also recently begun exploring links between labor and asset prices both in structural models and empirical analysis. However, much of the work linking labor frictions to asset prices has focused on equity and there has been relatively little work relating it to credit risk. A notable exception is Gilchrist and Zakrajsek (2012), who show that credit spreads predict future movements of aggregate quantities, including the unemployment rate. We differ because we focus on the impact of labor market frictions on credit risk. Our paper provides both a large set of empirical results, as well as a calibrated structural model.

Our paper is also related to the literature using structural models to study credit risk, which highlights the roles of financial leverage, asset volatility, and macroeconomic risk as the key determinants of credit spread. Closer to what we do, Collin-Dufresne and Goldstein (2001) consider firms who change leverage in response to changes in their value, which leads to mean reversion in leverage; Chen (2010) studies the effect of macro-economic uncertainty and risk premia on firms’ capital structure and default policies; Gomes and Schmid (2010) and Gomes and Schmid (2012) explore the propagation mechanism of movements in bond markets into the real economy; Gourio (2013) studies the impact of disaster risk on credit risk in a DSGE model; Gilchrist, Sim, and Zakrajsek (2014) study the relationship between uncertainty, investment, and credit risk in a DSGE model; Khan, Senga, and Thomas (2014) study default risk in a DSGE model with credit shocks; and Gomes, Jermann, and Schmid (2016) study the relation between nominal long-term debt, inflation, and movements in real

4 See Hall (2016) who reviews the recent literature and shows that a higher discount rate is associated with higher unemployment.

6 Tuzel and Zhang (2015), Favilukis and Liu (2016a), Donangelo, Gourio, and Palacios (2016), Donangelo (2016), and Ou and Shen (2016) find links between operating leverage due to labor, and asset returns. Non-labor related rigidities matter too: Weber (2013), and Georgiannen and Weber (2016) show that rigidity in price setting affects firms’ equity risk. There is also a more mature literature that explores the relationship between unions (which are one cause of labor market frictions) and asset prices. Ruback and Zimmerman (1984), Abowd (1989), Hirsch (1991), Lee and Maiz (2009) find a negative relation between unions and firm values, while Chen, Kacperczyk, and Ortiz-Molina (2011) find that unionization is related to higher costs of equity and Campello, Gao, Ou, and Zhang (2016) show that unions lead to losses for bond holders.

7 Examples include Hackethal, Miao, and Morellec (2009), Bai (2016), Chen, Collin-Dufresne, and Goldstein (2009), Bhamra, Kuehn, and Streubel (2010a).
quantities. However, labor is not the focus of any of these papers. As we show in this paper, wage rigidity is crucial to match cash flow dynamics in DSGE models. We complement the previous literature by incorporating realistic labor markets into the analysis.

Our first set of empirical findings, on labor markets and credit risk, relates to the empirical literature on the determinants of credit spreads. Collin-Dufresne, Goldstein, and Martin (2001) show that standard credit spread forecasters have rather limited explanatory power. Elton, Gruber, Agrawal, and Mann (2001) find that expected default losses account for a small fraction of the credit risk premium. We show that labor market variables have as strong explanatory power as financial leverage and stock market volatility in predicting the Baa-Aaa spread, and the cross-sectional variation in firms’ EDFs.

Since we solve a general equilibrium model with endogenous debt, our work relates not only to the price of debt, but also to the quantity of debt, and more broadly to the literature integrating financing frictions, capital structure, q-theory and asset pricing. As with the literature on credit risk, we complement previous work by considering how labor market frictions affect the firm’s financing decision. A closely related paper is Michaels, Page, and Whited (2016), which, through a structural model, asks how financing frictions affect the firm’s labor decision.

Our second set of empirical findings, that labor leverage leads to lower debt issuance, complements that of Simintzi, Vig, and Volpin (2015), who show that firms tend to reduce financial leverage when employment protection rises and stress the importance of fixed costs of labor. The channel proposed in that paper works in a similar way to the wage rigidity we consider. Similarly, Schmalz (2015) shows that small or constrained firms are likely to reduce financial leverage after unionization and Bartram (2015) shows that firms with higher pension and health obligations tend to have lower financial leverage. Our finding that high labor share firms hold less debt mirrors that of D’Acunto, Liu, Pfleuger, and Weber (2016), who find that firms with inflexible prices are more exposed to aggregate risk and hold less debt. Several papers have explored the strategic role of debt, where firms use debt to attain a better bargaining position vis-a-vis labor. This channel would lead to an opposite prediction: debt should increase when labor leverage is stronger.

It is useful at this stage, to contrast this paper with our previous work in Favilukis and Lin (2016b). Both papers build models in which wages are less volatile than the marginal product of labor, the mechanism for this combines a CES production function where capital and labor are complementary, and infrequent labor contract renegotiation. Favilukis and Lin (2016b) show that this mechanism creates operating leverage due to wage rigidity. This
makes dividends more procyclical, and equity more volatile, bringing the model closer to the data. Our current work departs from Favilukis and Lin (2016b) in three major ways. First, we introduce risky long-term debt, which is endogenously chosen by firms. Although computationally, this is a major challenge, it allows us to study the impact of labor market frictions for both credit risk and capital structure decisions. Second, Favilukis and Lin (2016b) assume that the Modigliani and Miller (1958) propositions hold, and exogenously impose a separation of total cash flows into equity and short-term debt. In our model, long-term debt induces a debt overhang problem, therefore financial decisions affect real decisions. Third, while Favilukis and Lin (2016b) is a calibration exercise, the current paper presents an extensive empirical analysis of the relationships between labor markets and credit markets, providing support for the model’s mechanism.

The rest of the paper is laid out as follows. Section 2 presents both the aggregate and cross-sectional empirical results. Section 3 describes the model and calibration. Section 4 presents the model’s results. Section 5 concludes.

2 Empirical evidence

In this section we explore the empirical relationship between labor markets and credit markets. We do so first, using aggregate, time series analysis of U.S. data, and second, using a cross-sectional analysis of firm-level data across a wide range of countries.

We document that labor share is positively, and that wage growth is negatively associated with stress in the credit markets. In particular, labor share is positively associated with credit spread, and negatively with debt growth; wage growth is negatively associated with credit spread, and positively with debt growth. The intuition is as follows. If the wage bill moves one for one with GDP, then the labor share is constant. Otherwise, times of high labor share are times when a larger fraction of the firm’s output is committed to labor payments, leaving less for other payments, such as interest. Similarly when wages do not move one for one with GDP, negative shocks are associated with falling output, and falling wages, however, since wages fall by less, falling wages indicate an increase in operating leverage and more risk for residual cash flows. The same time series intuition holds in the cross-section, where firms with higher labor share or lower wage growth are riskier. This intuition is laid out formally in Section 3.

2.1 Time series analysis

We first describe the data, then the empirical specifications and the results.

\[\text{Note that if wages fell for an exogenous reason, without a fall in output, then labor leverage would fall. Our intuition relies on wages and output both responding to the same shock, but at different rates. The empirical evidence is consistent with the later.}\]
Figure 1: Labor Market Variables and Credit Spread
This figure plots the Baa-Aaa credit spread (CS), wage growth (ΔW) and labor share (LS). Wage growth is the growth rate of real wages and salaries per employee; labor share is the total compensation scaled by GDP, and credit spread is the Moody’s Baa-Aaa corporate bond yield. Sample is from 1948 to 2014. The grey bars are the NBER recessions. All variables are standardized to allow for an easy comparison in one plot.
Figure 2: Labor share and financial leverage
This figure compares labor share and financial leverage. The three panels on the left contain book leverage, and the three on the right contain market leverage. The top two panels contain the median labor share in each country and the median leverage in each country. For the middle two panels, we define the relative labor share as a firm’s labor share minus the country’s labor share and we define relative leverage analogously. We then sort all firms into 50 portfolios based on relative labor share and plot the median relative labor share of each portfolio against the median relative leverage of each portfolio. In the bottom two panels, for each firm, we use baseline model-simulated data and compute its average labor share and financial leverage over every non-overlapping 25 year period. We then sort all of these into 50 portfolios based on labor share and plot the median labor share of each portfolio against its median financial leverage. Firm level labor share is labor expenses scaled by the sum of labor expenses and earnings before interest. Book (market) leverage is the book debt scaled by the sum of the book (market) value of equity and book debt.
Table 1: Descriptive Statistics

This table reports the descriptive statistics of the variables of interests. GDP growth (ΔGDP) is the real GDP growth from NIPA. Wage growth (ΔW) is the growth rate of real wages & salaries per employee. Labor share (LS) is the aggregate compensation divided by GDP. Investment growth (ΔINV) is the growth rate of real private nonresidential fixed investment. Debt growth (ΔDEBT) is the growth rate of credit market instrument liabilities for non-financial business from the Flow of Funds Table L102. P/E is the equity price to earnings ratio from Shiller. Term spread (TS) is the long-term government bond yield (10 year) minus the short-term government bond yield (3 months). Financial leverage (FinLev) is book value of nonfinancial credit instruments divided by the sum of the market value of equities and credit instruments of nonfinancial corporate sector. Market volatility (MktVol) is the annual volatility of CRSP value-weighted market premium. The spot rate (RF) is the real 1 year government bond yield from Shiller’s webpage. The default rate (DEF) is average default rate of all rate bonds from 1948 to 2006. Credit spread (CS) is the Moody’s Baa-Aaa corporate bond yield. GDP growth, wage growth, labor share, investment growth, debt growth, term spread, spot rate, default rate, and credit spread are in percentage terms. The sample is from 1948 to 2014.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>StDev</th>
<th>AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔGDP</td>
<td>3.22</td>
<td>2.39</td>
<td>0.15</td>
</tr>
<tr>
<td>ΔW</td>
<td>1.50</td>
<td>1.77</td>
<td>0.47</td>
</tr>
<tr>
<td>LS</td>
<td>55.29</td>
<td>1.23</td>
<td>0.86</td>
</tr>
<tr>
<td>ΔINV</td>
<td>4.46</td>
<td>6.31</td>
<td>0.20</td>
</tr>
<tr>
<td>ΔDEBT</td>
<td>4.65</td>
<td>3.71</td>
<td>0.63</td>
</tr>
<tr>
<td>P/E</td>
<td>16.58</td>
<td>16.16</td>
<td>0.82</td>
</tr>
<tr>
<td>TS</td>
<td>1.37</td>
<td>1.28</td>
<td>0.44</td>
</tr>
<tr>
<td>FinLev</td>
<td>0.44</td>
<td>0.09</td>
<td>0.88</td>
</tr>
<tr>
<td>MktVol</td>
<td>0.14</td>
<td>0.05</td>
<td>0.33</td>
</tr>
<tr>
<td>RF</td>
<td>1.57</td>
<td>2.73</td>
<td>0.56</td>
</tr>
<tr>
<td>DEF</td>
<td>0.82</td>
<td>0.98</td>
<td>-0.29</td>
</tr>
<tr>
<td>CS</td>
<td>0.95</td>
<td>0.40</td>
<td>0.74</td>
</tr>
</tbody>
</table>

2.1.1 Data and Variable Definitions. Table I reports the descriptive statistics for the variables we use in our aggregate regressions. Note that wage growth is far less volatile than GDP growth – evidence against a frictionless Cobb-Douglas model. The relationship between the credit spread, wage growth, and labor share is also evident in Figure I where credit spread moves together with labor share, and in the opposite direction of wage growth. The variable definitions are below.

Credit spread We use the Moody’s Baa corporate bond yield in excess of Aaa corporate bond yield from the Federal Reserve. Chen, Collin-Dufresne, and Goldstein (2009) argue that the Baa-Aaa spread mostly reflects credit risk, because the components due to taxes, call/put/conversion options and liquidity are of similar magnitude for Aaa and Baa bonds.

Debt growth Aggregate debt growth is the growth rate of credit market instrument liabilities for non-financial business from the Flow of Funds Table L102. Although the most
recent Table L102 does not report this as a separate item, this is also equal to the sum of commercial paper, munis, bonds, and loans.

Wage growth We use the growth rate in the real wages and salaries per full-time equivalent employee from NIPA Table 6.6.

Labor share Labor share is the ratio of aggregate compensation of employees to GDP. Aggregate compensation is from NIPA and includes noncash benefits.

Controls The empirical finance literature has identified several variables related to the credit spread (see Collin-Dufresne, Goldstein, and Martin (2001)). We measure financial leverage as the book value of credit market instruments of nonfinancial business sector divided by the sum of the market value of equity in the nonfinancial corporate business sector and the book value of the credit market instruments from the Flow of Funds Accounts. Stock market volatility is the annualized volatility of monthly CRSP stock market returns in excess of risk free rate. Term spread is the difference between the ten-year Treasury bond yield and the three-month Treasury bill yield from the Federal Reserve. The spot rate is the one-year Treasury bill rate. Our sample is from 1948 to 2014.

2.1.2 Predicting aggregate credit risk.

In this subsection, we explore the predictability of wage growth and labor share for credit spread. These results are in panels A and B of Table 2. As will be shown below, wage growth predicts the credit spread with a negative sign, and labor share predicts the credit spread with a positive sign.

The first column of panel A presents a univariate regression of one year ahead credit spread, \(CS_{t+1} \), on current wage growth, \(\Delta W_t \). Consistent with our intuition, the relationship is negative, and significant, with a t-statistic of -4.15. It is also economically significant, with an \(R^2 \) of 0.28, which is as strong as other conventional predictors.

The remaining columns present bivariate regressions, with one control at a time. The controls are labor share, investment growth, financial leverage, market volatility, the price-to-earnings ratio, the term spread, the risk free rate, GDP growth, and the credit spread at \(t \). In all cases, wage growth is significant. The lowest t-statistic is -2.22, when credit spread at \(t \) is included as a control; this regression has an \(R^2 \) of 0.59.

In column B, we present the relationship between the credit spread at \(t + 1 \) and labor share at \(t \). The univariate relationship is in the second column. Consistent with our intuition, the relationship is positive, and significant, with a t-statistic of 2.55 and an \(R^2 \) of 0.09. The first column presents a bivariate regression which includes both labor share and wage growth; both are significant, with t-statistics of 3.13 and -4.41, and an \(R^2 \) of 0.34. The

11We start in 1948 because financial leverage from Flow of Funds is available after 1946. We do not start in 1946 to avoid the influence of the WWII on our results. However, the predictability of wage growth for credit spread holds in a longer sample starting from 1929.

12For example, both financial leverage and stock market volatility positively predict credit spread, consistent with Collin-Dufresne, Goldstein, and Martin (2001), with \(R^2 \)'s of 0.37 and 0.22. However, the price-to-earnings ratio, term spread, and spot rate do not significantly predict credit spread.
remaining columns present bivariate regressions with other controls. Labor share remains positive in all cases, and significant in all but two (financial leverage and market volatility).

We do not report multivariate regressions because there are 10 explanatory variables and only 66 data points, therefore overfitting and collinearity become concerns. However, in the multivariate regressions when we control for financial leverage, market volatility, debt growth and investment growth, both wage growth and labor share remain statistically significant (results are not tabulated but are available upon request).

2.1.3 Predicting aggregate debt growth. Next we turn to an alternative measure of stress in the debt market, the issuance of debt. As argued before, high labor leverage, proxied by low wage growth or high labor share, makes debt especially unattractive, causing firms to issue less debt. We carry out exactly the same exercise as with credit spread, but using aggregate debt growth as the dependent variable. These results are in panels C and D of Table 2.

Panel C presents the relationship between aggregate wage growth and debt growth. Consistent with our intuition, wage growth positively forecasts debt growth, with t-statistics around 4 in the univariate and bivariate regressions, although the R^2 is lower than with credit spread.

Panel D presents the relationship between aggregate labor share and debt growth. Consistent with our intuition, labor share negatively forecasts debt growth, although this relationship is insignificant in most specifications.

2.2 Cross Sectional Analysis

In this section, analogous to the previous section, we test the relationship between labor markets and credit markets. However, rather than using aggregate data, we use a large, international cross-section of individual firms. We describe the firm-level data first, followed by the cross-sectional regression results.

2.2.1 Data. Our accounting data come from Compustat North America (for U.S. and Canadian firms) and Compustat Global (for firms from other countries) Fundamentals Annual files. Similarly, the security data come from CRSP and Compustat Global Security Daily respectively. Our key explanatory variables are labor expense growth (ΔXLR_t)13. Our model implies that both wage growth and labor expense growth should have similar forecasting power for credit market variables. We use labor expense growth (ΔXLR_t) as our primary variable. However, in the online appendix, we redo all regressions with wage growth ($\Delta WAGE_t$) instead of labor expense growth. As long as we control for employee growth (HN), the coefficients on wage growth keep the same sign and similar significance to the coefficients on labor expense growth. The reason we focus on labor expense growth is that we believe wages are a noisier variable at the firm level. In order to compute the wage, we need to divide XLR by the number of employees (EMP). Baumol, Blinder, and Wolff (2005) and Michaels, Page, and Whited (2016) both caution against using Compustat employment data due to its low

13
Table 2: Aggregate credit spread, debt growth, and labor market variables
This table reports regressions of either credit spread at $t + 1$ (CS, panels A and B) or debt growth between t and $t + 1$ (ΔDEBT, panels C and D) on either wage growth at t (ΔW, panels A and C) or labor share at t (LS, panels B and D). Each panel includes the univariate relationship, as well as bivariate regressions with one control at a time in the columns. In each panel, the first row presents the coefficient on the variable of interest (either ΔW or LS), the second row presents its t-stat, the third row presents the coefficient on the control variable, and the fourth row presents its t-stat. The last row presents the adjusted R^2. CS is the Moody’s Baa-Aaa corporate bond yield; ΔDEBT is the growth rate of ‘Nonfinancial business; credit market instruments; liability’ from Flow of Funds Table L102; ΔW is the growth rate of real wages and salaries per employee; LS is the aggregate compensation divided by GDP. The controls are the growth rate of real private nonresidential fixed investment (ΔINV); financial leverage, measured as the book value of nonfinancial credit instruments divided by the sum of the market value of equities and credit instruments of nonfinancial corporate sector (FinLev); the equity price to earnings ratio from Robert Shiller’s website (P/E); the long-term (10 year) government bond yield minus the short-term (1 year) government bond yield (TS); the annual volatility of CRSP value-weighted market premium (MktVol); the real 1 year government bond yield from Robert Shiller’s website (RF); the real GDP growth from NIPA (ΔGDP); and the lagged value of the dependent variable (lag y). Below the coefficients, we report heteroscedasticity and autocorrelation consistent t-statistics (Newey and West [1987]). The sample is from 1948 to 2014.

<table>
<thead>
<tr>
<th></th>
<th>ΔW</th>
<th>LS</th>
<th>ΔINV</th>
<th>FinLev</th>
<th>MktVol</th>
<th>P/E</th>
<th>TS</th>
<th>RF</th>
<th>ΔGDP</th>
<th>lag y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Credit spread and wage growth</td>
<td></td>
</tr>
<tr>
<td>(-4.15)</td>
<td>(-4.41)</td>
<td>(-3.75)</td>
<td>(-2.86)</td>
<td>(-4.32)</td>
<td>(-4.92)</td>
<td>(-4.90)</td>
<td>(-3.68)</td>
<td>(-2.90)</td>
<td>(-2.22)</td>
<td></td>
</tr>
<tr>
<td>β_x</td>
<td>8.52</td>
<td>-0.63</td>
<td>2.17</td>
<td>2.84</td>
<td>0.00</td>
<td>-5.36</td>
<td>4.63</td>
<td>-4.03</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td>(3.13)</td>
<td>(-1.24)</td>
<td>(4.77)</td>
<td>(6.35)</td>
<td>(-0.49)</td>
<td>(-1.62)</td>
<td>(2.61)</td>
<td>(-2.05)</td>
<td>(7.47)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>adj. R^2</td>
<td>0.28</td>
<td>0.34</td>
<td>0.28</td>
<td>0.42</td>
<td>0.41</td>
<td>0.28</td>
<td>0.30</td>
<td>0.37</td>
<td>0.32</td>
<td>0.59</td>
</tr>
<tr>
<td>Panel B: Credit spread and labor share</td>
<td></td>
</tr>
<tr>
<td>β_{LS}</td>
<td>8.52</td>
<td>10.66</td>
<td>10.33</td>
<td>10.33</td>
<td>6.33</td>
<td>11.14</td>
<td>9.83</td>
<td>9.28</td>
<td>8.57</td>
<td>5.82</td>
</tr>
<tr>
<td>(3.13)</td>
<td>(2.55)</td>
<td>(2.09)</td>
<td>(1.46)</td>
<td>(1.45)</td>
<td>(2.04)</td>
<td>(2.19)</td>
<td>(1.83)</td>
<td>(2.57)</td>
<td>(3.11)</td>
<td></td>
</tr>
<tr>
<td>β_x</td>
<td>-14.47</td>
<td>-1.20</td>
<td>2.71</td>
<td>3.14</td>
<td>-0.01</td>
<td>-3.79</td>
<td>2.24</td>
<td>-6.72</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>(-4.41)</td>
<td>(-2.45)</td>
<td>(5.73)</td>
<td>(4.68)</td>
<td>(-1.06)</td>
<td>(-0.71)</td>
<td>(0.98)</td>
<td>(-3.01)</td>
<td>(12.58)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>adj. R^2</td>
<td>0.34</td>
<td>0.09</td>
<td>0.11</td>
<td>0.40</td>
<td>0.24</td>
<td>0.13</td>
<td>0.09</td>
<td>0.10</td>
<td>0.25</td>
<td>0.56</td>
</tr>
<tr>
<td>Panel C: Debt growth and wage growth</td>
<td></td>
</tr>
<tr>
<td>$\beta_{\Delta W}$</td>
<td>1.35</td>
<td>1.33</td>
<td>1.25</td>
<td>1.12</td>
<td>1.19</td>
<td>1.43</td>
<td>1.36</td>
<td>1.29</td>
<td>0.98</td>
<td>0.71</td>
</tr>
<tr>
<td>(4.51)</td>
<td>(4.10)</td>
<td>(4.90)</td>
<td>(3.04)</td>
<td>(3.61)</td>
<td>(4.36)</td>
<td>(4.46)</td>
<td>(4.58)</td>
<td>(4.92)</td>
<td>(2.35)</td>
<td></td>
</tr>
<tr>
<td>β_x</td>
<td>-0.22</td>
<td>0.12</td>
<td>-0.07</td>
<td>-0.20</td>
<td>-0.00</td>
<td>-0.15</td>
<td>0.22</td>
<td>0.43</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>(-0.69)</td>
<td>(1.33)</td>
<td>(-0.81)</td>
<td>(-2.37)</td>
<td>(-1.51)</td>
<td>(-0.41)</td>
<td>(2.76)</td>
<td>(0.58)</td>
<td>(4.91)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>adj. R^2</td>
<td>0.01</td>
<td>0.06</td>
<td>0.02</td>
<td>0.00</td>
<td>0.19</td>
<td>0.33</td>
<td>0.01</td>
<td>0.05</td>
<td>0.07</td>
<td>0.44</td>
</tr>
<tr>
<td>Panel D: Debt growth and labor share</td>
<td></td>
</tr>
<tr>
<td>β_{LS}</td>
<td>-0.22</td>
<td>-0.42</td>
<td>-0.23</td>
<td>-0.15</td>
<td>-0.05</td>
<td>-0.42</td>
<td>-0.47</td>
<td>-0.67</td>
<td>-0.21</td>
<td>-0.45</td>
</tr>
<tr>
<td>(-0.69)</td>
<td>(-0.93)</td>
<td>(-0.52)</td>
<td>(-0.32)</td>
<td>(-0.10)</td>
<td>(-0.92)</td>
<td>(-1.13)</td>
<td>(-1.59)</td>
<td>(-0.63)</td>
<td>(-2.19)</td>
<td></td>
</tr>
<tr>
<td>β_x</td>
<td>1.33</td>
<td>-0.03</td>
<td>-0.17</td>
<td>-0.37</td>
<td>-0.00</td>
<td>-0.21</td>
<td>0.40</td>
<td>0.69</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>(4.10)</td>
<td>(-1.20)</td>
<td>(-1.96)</td>
<td>(-1.96)</td>
<td>(-0.09)</td>
<td>(-0.35)</td>
<td>(4.04)</td>
<td>(2.28)</td>
<td>(8.60)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>adj. R^2</td>
<td>0.06</td>
<td>0.05</td>
<td>0.06</td>
<td>0.04</td>
<td>0.20</td>
<td>0.30</td>
<td>0.07</td>
<td>0.06</td>
<td>0.12</td>
<td>0.41</td>
</tr>
</tbody>
</table>

correlation with Census data. Any timing mismatch between XLR and EMP will lead to noise in the wage. For example Compustat reports that between 1997 and 1998, AMR corporation increased XLR from $6.328B to $6.507B (2.83%), even as the EMP fell from 113900 to 103400 (-9.22%), implying a 13.27% rise in wages. AMR’s 10K filings, indicate that AMR consisted of three groups. AMR agreed to sell group 2 as of December 31, 1998. Comparing the 10K report to Compustat, we can deduce Compustat excludes the employment of
and labor share \((LS_t)\). We define \(\Delta XLR_t = \frac{XLR_t - XLR_{t-1}}{0.5(XLR_t + XLR_{t-1})}\) and \(LS_t = \frac{XLR_t}{XLR_t + \text{EBITDA}_t}\), where XLR is labor expenses from Compustat and EBITDA is earnings before interest, taxes, depreciation, and amortization (EBITDA). Our key dependent variables are total debt growth \(\Delta \text{DEBT}_{t+1}\) and Moody-KMV’s Expected Default Frequency \((EDF_{t+1})\). We define \(\Delta \text{DEBT}_{t+1} = \frac{\text{DEBT}_{t+1} - \text{DEBT}_t}{0.5(\text{DEBT}_{t+1} + \text{DEBT}_t)}\), where DEBT is total debt, computed as the sum of long-term debt (DLTT) and short-term debt (DLC).

We use EDF to measure the default probability for global firms from 1992 to 2011, which is also the sample period for most of our firm-level analysis. As far as we are aware, EDF is the best large-sample data set on credit risk available for an international setting. One concern with using EDF to measure credit risk is that EDF is computed by Moody’s using the Merton model and captures credit risk only to the degree that inputs into the Merton model, namely estimates of equity volatility and financial leverage, capture credit risk. We believe this concern is misplaced. We control for both leverage and past volatility in our regressions, which does not change our main result – that labor market variables predict EDF. It is possible that Moody’s uses variables correlated with our labor market variables to compute EDF or its inputs, which is why labor market variables predict EDF. But if this is the case, then Moody’s is accounting for labor leverage risk exactly as our model suggests it should.

In the online appendix, we report the number and percentage of annual (firm-year) observations that have non-missing labor expenses (Compustat variable XLR) and EDF for each of the thirty-nine countries. We follow Gao, Parsons, and Shen (2013) to categorize the countries into seven different regions. For the U.S., only 7% (9588 of 135632) of the observations have non-missing labor expenses. If we further require non-missing EDF data, this percentage drops to 3.6%. Therefore, the sample with labor expenses based on U.S. firms is quite small and it is difficult to draw conclusions from this sample only. This is the main reason that we expand our scope to global firms for our firm-level analysis. Outside of the U.S., many countries have relatively good coverage of labor expenses, especially European countries. Japan is an exception – there are only 2 annual observations with XLR available – therefore our analysis does not include Japan.

The online appendix also reports summary statistics for our main variables of interest: \(EDF\), \(\Delta \text{DEBT}\), \(\Delta XLR\), and \(LS\). Both \(\Delta XLR\) and \(LS\) show significant variation across regions. In general, developed countries have higher labor share and lower labor expenses growth, whereas developing countries have lower labor share and higher labor expenses growth.

\[\text{group 2, but includes compensation of all three groups. As a result, the wage computed from Compustat appears to rise by 13.27%, even though the actual wage rose by only 3.6%.}\]

\[\text{\text{EBITDA}+XLR is the value added by a firm, and \(LS\) is the labor share of value added.}\]

\[\text{Both \(\Delta XLR\) and \(LS\) are winsorized at 1% and 99% percentiles. The mean values of un-winsorized variables are much higher – an indication of outliers in labor expenses.}\]
2.2.2 Predicting Firm-Level Credit Risk. In this subsection, we show that at the firm-level, high labor leverage, measured by low labor expense growth or high labor share, is associated with stress in the credit market, measured by expected default probability. These results are presented in Table 3 and are consistent with the aggregate results presented earlier in Table 2 and with our model results, to be presented in Table 8.

We first conduct univariate, firm-level, cross-sectional analysis. We use the Fama and MacBeth (1973) approach to analyze the predictive power of labor obligations for credit risk: within each period t, we run a cross-sectional regression of EDF_{t+1} on labor expenses growth realized in year t, or labor share in year t. In particular, when we use labor expenses growth (or labor share) as a determinant for default risk, we run the following cross-sectional regression

$$EDF_{i,t+1} = \beta_0 + \beta_1 \times \Delta XLR_{it} \text{ (or } LS_{it} \text{)} + \beta_2 \times X_{it} + \epsilon_{it+1},$$

where X_{it} is a vector of firm characteristics, which, in the univariate regression, is empty.

These results are in the first and second columns of Panel A in Table 3; they are also identical to the univariate regressions for the data in Table 8 of the model section. Consistent with our intuition, the coefficient on ΔXLR is negative and statistically significant, while the coefficient on LS is positive and statistically significant, with t-statistics of -7.64 and 5.46, respectively.

We also perform several robustness tests. Panel B is identical to Panel A but with country-fixed effects. Panel C also adds time t book leverage and stock return volatility as controls. In Panel D we control for additional well-known determinants of credit and distress risk, as suggested by Altman (1968), Zmijewski (1984), Collin-Dufresne, Goldstein, and Martin (2001), Shumway (2001), and Campbell, Hilscher, and Szilagyi (2008). These include working capital, retained earnings, EBIT, sales growth, net income, current asset to liability ratio, investments, relative firm size, market capitalization. We also control for individual firm’s stock excess return and the market return for its country in year t. In the online appendix we also present identical results but with market leverage replacing book leverage or with net hiring as an additional control (inclusion of net hiring significantly reduces the number of observations). In all cases, ΔXLR and LS remain highly significant; for example with the full set of controls, the t-statistics are -7.20 and 4.55, respectively.

The online appendix also reports the correlation between EDF_{t+1} and either ΔXLR or LS_t within each country. In particular, for each firm we compute the time series correlation, and then average across all firms in a country. We also compute the t-statistic corresponding to the test $H_0 : Corr(\Delta XLR, EDF) = 0$. The average value of $Corr(\Delta XLR, EDF)$ is -0.04 for all countries (11,677 firms) with a t-stat of -7.89. The relationship is statistically significant for 16 of 38 countries, and the insignificant countries tend to have a small number of firms in the sample. The average value of $Corr(LS, EDF)$ is 0.18 for all countries (12,483 firms) with a t-stat of 34.24. The average value of this correlation is also positive and
statistically significant for 31 of the 38 countries.

Taken together, these results indicate that labor obligations are an important determinant of credit risk.

2.2.3 Predicting Firm-Level Debt Growth. We repeat exactly the same exercise as in the previous section, except that the left hand side variable is now debt growth between \(t \) and \(t + 1 \), rather than EDF at \(t + 1 \). Debt growth is regressed on time \(t \) labor expense growth \(\Delta XLR_t \) or time \(t \) labor share \(LS_t \), and a set of controls. These results are in the third and fourth columns of each panel in Table 3.

As expected, the coefficients have opposite signs to the EDF regressions. Times of high labor leverage (low labor expense growth, high labor share) are associated with low issuance of new debt. For example, when we include all control variables, the t-statistic is 5.68 for \(\Delta XLR \) and -4.23 for \(LS \). As with EDF, the positive coefficient on labor expense growth and the negative coefficient on labor share are consistent with our aggregate analysis in Table 2, and with our model in Table 8.

We also compute correlations of debt growth with either labor expense growth, or labor share, as we did with EDF; these results are in the online appendix. The average value of \(\text{Corr}(\Delta XLR, \Delta Debt) \) is 0.03 for all countries (15,447 firms) with a t-statistic of 7.47. Although the pooled result is highly significant, this relationship is generally weaker, with significance in only 10 of 38 countries. The average value of \(\text{Corr}(LS, \Delta Debt) \) is -0.05 for all countries (16,972 firms) with a t-stat of -11.90. The average value of this correlation is negative and statistically significant for 19 of the 38 countries. As with EDF, these results indicate that labor obligations are an important determinant of firms’ capital structure choices.

2.2.4 Conditioning on rigidity. As will be discussed below, our model’s intuition suggests that the relationships described above should be stronger if wages are more rigid. In fact, in our model, if wages are perfectly flexible and the production function is Cobb-Douglas, then labor share is constant and cannot have any predictable power. We test this additional hypothesis in Table 4.

First, we must define rigidity. For each firm we compute its volatility of labor expense growth over its entire sample. We define the firm’s level of rigidity, \(\mu \) as the inverse of its volatility of labor expense growth. This is a natural definition of rigidity, and consistent with our model.\(^\text{16}\)

There are four panels in Table 4, one for each of the four relationships of interest: credit risk and labor expense growth, credit risk and labor share, debt growth and labor

\(^{\text{16}}\)In our model, two separate parameters make wages more rigid: \(\mu \), which controls the renegotiation frequency, and \(\eta \) which controls the complementarity between capital and labor. As can be seen in Panel A of Table 3, \(1/\sigma(\Delta XLR) \) proxies for both of these.
Table 3: Firm level credit risk and labor market variables

This table reports the results of cross-sectional regressions using labor expense growth (ΔXLR) or labor share (LS) at t to predict default risk (EDF) at $t+1$ or the debt growth between t and $t+1$ ($\Delta DEBT$). There are four relationships of interest, presented in columns 1-4 of each panel: EDF on ΔXLR, EDF on LS, $\Delta DEBT$ on ΔXLR, and $\Delta DEBT$ on LS. The four panels present different specifications of these four relationships. Panel A presents univariate regressions, Panel B presents univariate regressions with country fixed effects (FE), Panel C adds book leverage ($LEVB$) and past equity volatility σ as controls, and Panel D has additional controls. The control variables include working capital ($WCTA$), retained earnings ($RETA$), EBIT ($EBITTA$), sales (STA), net income ($NITA$), current asset to liability ($CACL$), investment ($Invest$), equity excess return (R_{excess}), relative size ($SIZE$), market return (R_m), market capitalization ($MCAP$). The appendix provides additional details on variable construction. All the results are estimated using Fama and MacBeth (1973) cross-sectional regressions. The t-statistics reported in the parentheses below each coefficient estimate are heteroscedasticity and autocorrelation consistent (Newey and West (1987)).

<table>
<thead>
<tr>
<th>y</th>
<th>Panel A</th>
<th></th>
<th></th>
<th>Panel B</th>
<th></th>
<th></th>
<th>Panel C</th>
<th></th>
<th></th>
<th>Panel D</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EDF</td>
<td>EDF</td>
<td>$\Delta DEBT$</td>
<td>$\Delta DEBT$</td>
<td>EDF</td>
<td>EDF</td>
<td>$\Delta DEBT$</td>
<td>$\Delta DEBT$</td>
<td>EDF</td>
<td>EDF</td>
<td>$\Delta DEBT$</td>
<td>$\Delta DEBT$</td>
</tr>
<tr>
<td>ΔXLR</td>
<td>-0.92</td>
<td>0.10</td>
<td>-0.98</td>
<td>0.10</td>
<td>-0.45</td>
<td>0.09</td>
<td>-0.45</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-7.64)</td>
<td>(6.32)</td>
<td>(-8.47)</td>
<td>(5.40)</td>
<td>(-8.85)</td>
<td>(5.75)</td>
<td>(-7.20)</td>
<td>(5.68)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LS</td>
<td>0.43</td>
<td>-0.03</td>
<td>0.61</td>
<td>-0.03</td>
<td>0.66</td>
<td>-0.03</td>
<td>0.61</td>
<td>-0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5.46)</td>
<td>(-7.01)</td>
<td>(6.11)</td>
<td>(-5.86)</td>
<td>(7.01)</td>
<td>(-6.02)</td>
<td>(4.55)</td>
<td>(-4.23)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>FE</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obs.</td>
<td>77082</td>
<td>76553</td>
<td>105313</td>
<td>104627</td>
<td>77082</td>
<td>76553</td>
<td>105313</td>
<td>104627</td>
<td>76527</td>
<td>76021</td>
<td>104203</td>
<td>103555</td>
</tr>
<tr>
<td>Avg. R^2</td>
<td>0.007</td>
<td>0.004</td>
<td>0.005</td>
<td>0.001</td>
<td>0.085</td>
<td>0.085</td>
<td>0.026</td>
<td>0.022</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Within each panel, we test whether the relationship is stronger for firms with high μ. We do this in one of two ways. First, in the first column of each panel, we include an interaction term between our explanatory variable (either labor share or labor expense growth) and the degree of rigidity. For all four relationships of interest, the interaction term has the same sign as the original...
This table reports the results of cross-sectional regressions using labor expense growth (ΔXLR) or labor share (LS) at \(t \) to predict default risk (EDF) at \(t + 1 \) or the debt growth between \(t \) and \(t + 1 \) (ΔDEBT). Here, we are interested in this relationship, conditional on the degree of wage rigidity. We define rigidity \(\mu \) as the inverse of the volatility of each firm’s labor expense growth. There are four relationships of interest: EDF on ΔXLR, EDF on LS, ΔDEBT on ΔXLR, and ΔDEBT on LS. For each set of relationships, we present three regressions. The first regression includes an interaction between rigidity \(\mu \) and our explanatory variable of interest (either ΔXLR or LS), and controls for \(\mu \) as well. The second regression is restricted to include only firms in the top 25th percentile of \(\mu \), while the third regression includes only firms in the bottom 75th percentile of \(\mu \). All results include country fixed effects (FE) and the following controls: book leverage (LEVB), past equity volatility \(\sigma \), working capital (WCTA), retained earnings (RETA), EBIT (EBITTA), sales (STA), net income (NITA), current asset to liability (CACL), investment (Invest), equity excess return (\(R_{\text{excess}} \)), relative size (RSIZE), market return (\(R_{\text{m}} \)), market capitalization (MCAP). The appendix provides additional details on variable construction. All the results are estimated using Fama and MacBeth (1973) cross-sectional regressions. The t-statistics reported in the parentheses below each coefficient estimate are heteroscedasticity and autocorrelation consistent (Newey and West (1987)).

<table>
<thead>
<tr>
<th>Sample</th>
<th>EDF and ΔXLR</th>
<th>EDF and LS</th>
<th>ΔDEBT and ΔXLR</th>
<th>ΔDEBT and LS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>High (\mu)</td>
<td>Low (\mu)</td>
<td>All</td>
</tr>
<tr>
<td>ΔXLR</td>
<td>-0.45</td>
<td>-1.50</td>
<td>-0.42</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td>(-7.20)</td>
<td>(-9.24)</td>
<td>(-7.18)</td>
<td>(-1.32)</td>
</tr>
<tr>
<td>LS</td>
<td>0.50</td>
<td>1.14</td>
<td>0.55</td>
<td>(-3.57)</td>
</tr>
<tr>
<td></td>
<td>(3.35)</td>
<td>(7.62)</td>
<td>(4.06)</td>
<td>(1.91)</td>
</tr>
<tr>
<td>(\mu \times \mu)</td>
<td>0.05</td>
<td>-0.10</td>
<td>-0.04</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td>(7.41)</td>
<td>(-11.68)</td>
<td>(-11.29)</td>
<td>(-1.78)</td>
</tr>
<tr>
<td>LEVB</td>
<td>4.66</td>
<td>3.41</td>
<td>5.07</td>
<td>4.53</td>
</tr>
<tr>
<td></td>
<td>(3.98)</td>
<td>(2.83)</td>
<td>(4.43)</td>
<td>(3.92)</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>1.45</td>
<td>1.39</td>
<td>1.47</td>
<td>1.42</td>
</tr>
<tr>
<td></td>
<td>(6.74)</td>
<td>(4.99)</td>
<td>(7.00)</td>
<td>(6.40)</td>
</tr>
<tr>
<td>Controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Obs.</td>
<td>74655</td>
<td>19057</td>
<td>55729</td>
<td>73229</td>
</tr>
<tr>
<td>Avg. (R^2)</td>
<td>0.296</td>
<td>0.319</td>
<td>0.301</td>
<td>0.301</td>
</tr>
</tbody>
</table>
coefficient, and is significant, implying a stronger effect for more rigid firms. Thus, the relationship between EDF and labor expense growth is more negative for firms with more rigidity; for EDF and labor share it is more positive for firms with more rigidity; for debt growth and labor expense growth it is more positive for firms with more rigidity; and for debt growth and labor share it is more negative for firms with more rigidity.

Second, in the second and third columns, we separate all firms into high rigidity (top 25% \(\mu \)) and low rigidity (bottom 75% \(\mu \)) and rerun the regression within each subset. In all four cases, the magnitude of the coefficient is larger in the rigid subset, and the differences are significant. All results in Table 4 include country fixed effects and the full set of control variables.

In the online appendix we also redo the same analysis but with an alternative measure of rigidity, the autocorrelation of labor expense growth. In our model in Section 3 below, both the inverse volatility of wage growth and the autocorrelation of wage growth proxy for either high \(\mu \) or low \(\eta \). These results are largely similar to the ones in the main text – the relationship between labor market variables and credit risk is stronger when wages are more rigid.

2.2.5 Labor share and financial leverage. The determinants of a firm’s capital structure are a major topic in corporate finance. In this section, we show that the level of a firm’s labor share is negatively related to the level of financial leverage chosen by firms. These results are closely related to earlier results on labor share and debt growth, and the intuition is similar as well.

In Panel A of Table 5 we regress a firm’s leverage, averaged over its entire life cycle, on its labor share, averaged over its entire life cycle. We present a univariate regression, a case with country fixed effects, and a case with a full set of controls. We do this for both market leverage (left panel) and book leverage (right panel). Labor share is highly significant at explaining financial leverage, with a univariate t-statistic of -32.86, and a t-statistic of -9.39 for a full set of controls. The \(R^2 \) is also economically significant, labor share alone explaining 6.3% of the variation in financial leverage, which accounts for nearly a quarter of the total explained variation. In Panel B, we run Fama and MacBeth (1973) regressions of leverage at \(t+1 \) on labor share at \(t \), and a set of controls, including leverage at \(t \). In these regressions as well, labor share is negatively related to financial leverage.

We also present these results graphically in Figure 2. The three panels on the left are for book leverage, while on the right are for market leverage. In the top two panels, we plot each country’s median labor share against its median financial leverage. In the middle two panels, we compute each firm’s relative labor share (leverage) by subtracting its country’s labor share (leverage) from each firm’s labor share (leverage). We then sort firms into 50 portfolios based on relative labor share and plot each portfolio’s median. We present
This table reports results of cross-sectional regressions of financial leverage on labor share (LS). In the top Panel we regress a firm’s average financial leverage on its average labor share over the entire sample. In the bottom panel, we use labor share (LS) at t to predict financial leverage at $t + 1$. Financial leverage is either market leverage (LEVM on the left) or book leverage (LEVB on the right). We present univariate regressions, add just country fixed effects (FE), or fixed effects and various controls. In the top panel, controls are averaged over the entire sample; in the bottom panel controls are computed at t. The controls are volatility (σ), past leverage (bottom panel only), working capital ($WCTA$), retained earnings ($RETA$), EBIT ($EBITTA$), sales (STA), net income ($NITA$), current asset to liability ($CACL$), investment ($Invest$), equity excess return (R_{excess}), relative size ($RSIZE$), market return (R_m), market capitalization ($MCAP$). The appendix provides additional details on variable construction. In the bottom panel, all the results are estimated using Fama and MacBeth (1973) cross-sectional regressions. The t-statistics reported in the parentheses below each coefficient estimate, in the bottom panel, all are heteroscedasticity and autocorrelation consistent (Newey and West (1987)).

Panel A

<table>
<thead>
<tr>
<th></th>
<th>LEVM</th>
<th>LEVB</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS</td>
<td>-0.066</td>
<td>-0.043</td>
</tr>
<tr>
<td></td>
<td>(-32.86)</td>
<td>(-19.95)</td>
</tr>
<tr>
<td>Controls</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>FE</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Obs.</td>
<td>16046</td>
<td>16046</td>
</tr>
<tr>
<td>Avg R^2</td>
<td>0.063</td>
<td>0.143</td>
</tr>
</tbody>
</table>

Panel B

<table>
<thead>
<tr>
<th></th>
<th>LEVM$_{t+1}$</th>
<th>LEVB$_{t+1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS$_t$</td>
<td>-0.041</td>
<td>-0.029</td>
</tr>
<tr>
<td></td>
<td>(-4.72)</td>
<td>(-19.16)</td>
</tr>
<tr>
<td>LEVM$_t$</td>
<td>0.859</td>
<td>0.857</td>
</tr>
<tr>
<td></td>
<td>(60.94)</td>
<td>(51.54)</td>
</tr>
<tr>
<td>LEVB$_t$</td>
<td>0.866</td>
<td>(0.859)</td>
</tr>
<tr>
<td></td>
<td>(143.11)</td>
<td>(124.74)</td>
</tr>
<tr>
<td>σ</td>
<td>-0.025</td>
<td>(-3.66)</td>
</tr>
<tr>
<td>Controls</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>FE</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Obs.</td>
<td>95225</td>
<td>95225</td>
</tr>
<tr>
<td>Avg R^2</td>
<td>0.017</td>
<td>0.142</td>
</tr>
</tbody>
</table>

results from the model in the bottom two panels. These show a strikingly strong negative relationship between labor share and financial leverage.

The intuition for these results is that high labor share makes the firm riskier. High labor leverage firms behave optimally, by choosing less financial leverage in the capital structure. As before, we interpret these results as evidence that labor leverage is associated with more risk in credit markets.
3 Model

In this section, we present a dynamic general equilibrium model with heterogeneous firms to understand links between labor market frictions, firms’ credit risk, and debt issuance decisions. The departure from the existing literature (Gilchrist, Sim, and Zakrajsek (2014), Khan, Senga, and Thomas (2014), Favilukis and Lin (2016b), etc.,) is that we incorporate both labor market frictions (staggered wage contracts) and risky long-term debt into a DSGE model. This allows us to study the implications of wage rigidity for both asset prices and firms’ real and financing policies. We begin with the household’s problem. We then outline the firm’s problem, and describe the economy’s key frictions. Finally we define the equilibrium.

We consider one representative household who receives labor income, chooses between consumption and saving, and invests in a portfolio consisting of all financial assets in the economy. The household maximizes utility as in Epstein and Zin (1989).

\[
U_t = \max \left((1 - \beta)C_t^{1 - \frac{1}{\psi}} + \beta E_t[U_{t+1}^{1 - \theta}] \right)^{\frac{1}{1 - \theta}}
\]

where \(C_t \) is the average consumption. For tractability, we assume that aggregate labor supply is inelastic and equal to one.\(^{17}\) The preference parameters are the time discount factor \(\beta \), the risk aversion \(\theta \), and the intertemporal elasticity of substitution \(\psi \).

3.1 Firms

The interesting frictions in the model are on the firm’s side. We assume that a large number of firms (indexed by \(i \) and differing in idiosyncratic productivity) choose investment, labor, and the mix of equity versus corporate debt in their capital structure, to maximize the present value of future dividend payments. The dividend payments are equal to the firm’s output net of wages, operating costs, payments to creditors, taxes, investment, and adjustment costs. Output is produced from labor and capital. Firms hold beliefs about the discount factor \(M_{t+1} \), which is determined in equilibrium.

\(^{17}\)The assumption that the aggregate labor supply is inelastic is a potential concern about our model’s generality. Although we do not extend the model to elastic labor because it would require us to keep track of an additional state variable (aggregate past employment), we do not believe this would change the model’s asset pricing or capital structure implications. First, this concern is valid for our aggregate results only, because, as in a partial equilibrium model, individual firms are free to hire any number of workers. Second, Favilukis and Lin (2016b) solve a model similar to the current one, but without an endogenous capital structure or long-term debt. In that model, the labor supply is positively correlated with output growth and calibrated to match the behavior of employment in the data; they also solved a model with constant labor supply. By construction, the model with flexible labor is better at matching the joint behavior of employment, labor share, and output growth. However, both the constant labor and flexible labor models had similar quantitative implications for asset pricing, as long as the labor share behavior was similar.
3.1.1 Technology. The variable Z_t is an exogenously specified total factor (labor-augmenting) productivity common to all firms; idiosyncratic productivity of firm i is Z_{it}; their calibration is described below.

Firm i’s output is given by

$$Y_i^t = Z_i^t \left(\alpha(K_i^t)^\eta + (1 - \alpha)(Z_t N_i^t)^{\eta \rho} \right)^{\frac{1}{\eta}}.$$ \hspace{1cm} (3)

Output is produced with CES technology from capital (K_i^t) and labor (N_i^t). ρ determines the degree of return to scale (constant return to scale if $\rho = 1$), $\frac{1}{1-\eta}$ is the elasticity of substitution between capital and labor (Cobb-Douglas production if $\eta = 0$), and $(1 - \alpha)\rho$ is related to the share of labor in production.

3.1.2 The Wage Contract. In standard production models, wages are reset each period and employees receive the marginal product of labor. We assume that any employee’s wage will be reset in the current period with probability $1 - \mu$. When $\mu = 0$, our model is identical to models without labor market frictions: all wages are reset each period, and each firm freely chooses the number of its employees N_i^t such that its marginal product of labor is equal to the spot wage. When $\mu > 0$, we must differentiate between the spot wage (w_t) which is paid to all employees resetting wages this period, the economy’s average wage (\overline{w}_t), and the firm’s average wage (\overline{w}_i^t). This wage contract is similar to Gertler and Trigari (2009).

When a firm hires a new employee in a period with spot wage w_t, with probability μ it must pay this employee the same wage next period; on average this employee will keep the same wage for $\frac{1}{1-\mu}$ periods. All resetting employees participate in the same labor market, where the spot wage is selected to clear labor supply and demand. The firm chooses the total number of employees N_i^t each period. These conditions lead to a natural formulation of the firm’s average wage at t, as the weighted average of the spot wage at t and the average wage at $t - 1$:

$$\overline{w}_i^t N_i^t = w_t (N_i^t - \mu N_{i-1}) + \overline{w}_{i-1}^t \mu N_{i-1}^t.$$ \hspace{1cm} (4)

Here $N_i^t - \mu N_{i-1}$ can be interpreted as the number of new employees that the firm hires at the spot wage, and μN_{i-1}^t as the number of tenured employees with average wage \overline{w}_{i-1}^t.

Note that the rigidity in our model is a real wage rigidity, although our channel could in principle work through nominal rigidities as well. There is evidence for the importance of both real and nominal rigidities. It is possible that $N_i^t < \mu N_{i-1}$, in which case μN_{i-1} cannot be interpreted as tenured employees. In this case we would interpret the total wage bill as including payments to prematurely laid-off employees. Note that the wage bill can be rewritten as $\overline{w}_i^t N_i^t = \overline{w}_{i-1}^t N_i^t + (\mu N_{i-1}^t - N_i^t)(\overline{w}_{i-1}^t - w_t)$. Here the first term on the right is the wage paid to current employees and the second term represents the payments to prematurely laid off employees.

See Barwell and Schweitzer (2007), Devicenti, Maida, and Sestito (2007), and...
3.1.3 The debt contract. The firm can raise capital through equity, and through long-term, risky debt with a coupon payment κ^i_t. In any period t, if the firm is debt-free (i.e., $\kappa^i_t = 0$), the firm can choose to issue new debt with a promised coupon of κ^i_{t+1}, with repayment starting at $t+1$. When issuing new debt, the firm receives the market value of this debt Ψ^i_t from the creditors; the pricing of this debt is described below.

If the firm currently has outstanding debt (i.e., $\kappa^i_t > 0$), then the firm cannot alter its debt contract, so that $\kappa^i_{t+1} = \kappa^i_t$, unless one of the following conditions occur: i) The debt randomly expires between t and $t+1$, which happens with probability p_{exp}, ii) The firm chooses to default at the start of $t+1$. In both of these cases, $\kappa^i_{t+1} = 0$, and the firm can issue new debt at $t+1$. We also assume that a firm’s debt cannot expire before it has paid its first coupon payment. The probability of debt expiration determines the expected maturity of the debt, i.e., the average length of the debt contract is $1/p_{exp}$. The firm defaults at t if its cum-dividend market value V^0_{t+1} is below 0.

In the event of bankruptcy, equity holders are left with nothing and creditors inherit a debt-free firm. Such a firm’s cum-dividend value is denoted by V^0_{t+1}. Note that unlike most models of corporate debt, there are no explicit distress costs. However, long-term debt endogenously generates a debt overhang problem, as in Myers (1977), which causes under-investment. Therefore, despite the tax advantages of debt, forward looking firms choose to limit the amount of debt they take on. We will come back to this when we discuss the model’s results.

The market price of a bond is determined in equilibrium; it depends on both the aggregate state (through the discount rate) and the firm’s individual state (through probability Bauer, Goette, and Sunde (2007). Dickens, Goette, Groshen, Holden, Messina, Schweitzer, Turunen, and Ward (2007).)

20In the real world, long-term debt typically pays a fixed coupon payment and then expires on a predetermined date. However, modeling this would require a very large state space since time until expiry would need to be a state variable. A common alternative for modeling long-term debt is to assume that the coupon payment deterministically decreases over time at some rate, for example, as in Gomes, Jermann, and Schmid (2016). We choose to model random expiry because it strikes us as more realistic: real-world coupon payments do not shrink over time. Furthermore, these models typically imply that firms continuously issue or retire their debt, whereas in the data, capital structure adjustment is done in clusters as documented in Leary and Roberts (2005). The trade-off is that random expiry induces idiosyncratic risk into both debt and equity cash flows, and this risk is not present in the real world. We do not believe this idiosyncratic risk significantly affects our results because it is not priced. The return on debt and credit spread we report is always relative to a pseudo-risk-free security that does not default but has exactly the same expiry risk as corporate debt.

21Our calibration implies that wage obligations dissipate much faster than debt obligations, because $1 - \mu > p_{exp}$. However, upon default, the creditors who take over the firm cannot clear the firm’s labor obligations, therefore creditors suffer a loss relative to promised value, but employees do not. In the real world, absolute priority rules, which may be firm or region specific, determine the order of losses. However, due to bargaining around the time of default, absolute priority is often violated, thus all parties may absorb some of the losses. Allowing labor obligations to suffer some fraction of the loss at default may quantitatively weaken our mechanism, but would not change the main result.
of default and recovery value). It satisfies the following equation,

\[\Psi^i_t = E_t M_{t+1} \left[1_{\{\text{exp}\}} \times 0 + 1_{\{V_{t+1} \leq 0\}} \times V^0_{t+1} + (1 - 1_{\{\text{exp}\}} - 1_{\{V_{t+1} \leq 0\}}) \left(\kappa^i_{t+1} + \Psi^i_{t+1} \right) \right], \]

(5)

where \(\Psi^i_t \) is the price of debt with coupon payment \(\kappa^i_{t+1} \), \(1_{\{\text{exp}\}} \) is an indicator function that takes the value of one when the debt expires and zero otherwise, and \(1_{\{V_{t+1} \leq 0\}} \) is an indicator function that takes the value of one when the firm is insolvent and zero otherwise.

3.1.4 Accounting. The equation for after-tax profit is

\[\Pi(K^i_t) = (1 - \tau) \left(Y^i_t - w^i_t N^i_t - \delta_t - \kappa^i_t \right) + \tau \delta K^i_t \]

(6)

\(\Pi(K^i_t) \) is after-tax profit, which is output less labor, operating costs, coupon payments, and taxes, plus the capital depreciation tax shield. Operating costs are defined as \(F_t = f \times K_t \); they depend on aggregate (but not firm specific) capital.\(^{22}\) Labor costs are \(w^i_t N^i_t \).

Convex capital adjustment costs are given by

\[\Phi(I^i_t, K^i_t) = \nu \left(\frac{I^i_t}{K^i_t} \right) K^i_t, \]

where \(\nu > 0 \). The total dividend paid by the firm is

\[D^i_t = \Pi(K^i_t) - I^i_t - \Phi(I^i_t, K^i_t) + \Psi^i_t 1_{\{\text{Issue}\}}, \]

(7)

which is after-tax profit less investment and capital adjustment costs, plus the cash from newly issued debt where \(1_{\{\text{Issue}\}} \) is an indicator function that takes the value of one when the firm issues new debt and zero otherwise.

3.1.5 The Firm’s Problem. We now formally write down firm \(i \)'s problem. The firm maximizes the present discounted value of future dividends

\[V^i_t = \max \left\{ 0, \max_{I^i_t, N^i_t, \kappa^i_{t+j+1}} \mathbb{E}_t \left[\sum_{j=0}^{\infty} M_{t+j} D^i_{t+j} \right] \right\}, \]

(8)

subject to the standard capital accumulation equation

\[K^i_{t+1} = (1 - \delta) K^i_t + I^i_t, \]

(9)

as well as equations (3), (4), (5), (6), and (7).

\(^{22}\)Because this is a non-stationary economy, fixed costs must be scaled by some variable that is co-integrated with the size of the economy. We choose aggregate capital because it is the smoothest state variable.
3.1.6 Credit Spread. We define the credit spread CS_t in the model as the difference between the yield ζ_t^B on the defaultable debt and the yield of a comparable bond without default risk, ζ_t, i.e.,

$$CS_t = \zeta_t^B - \zeta_t,$$ \hspace{1cm} (10)

with $\zeta_t^B = \frac{\kappa_{i+1}}{\Psi_{i}^{(safe)}}$ and $\zeta_t = \frac{\kappa_{i+1}}{\Psi_{i}^{(safe)}}$ where $\Psi_{i}^{(safe)}$ is the price of an identical bond (with the same expiry risk) but without the possibility of default.

3.2 Equilibrium

We assume that there exists some underlying set of aggregate state variables S_t which is sufficient for this problem. Each firm’s individual state variables are given by the vector $S_t^i = [Z_t^i, K_t^i, N_{i-1}^i, \bar{w}_{i-1}, \kappa_{i}^i]$. Because the household is a representative agent, we are able to avoid explicitly solving the household’s maximization problem and simply use the first order conditions to find M_{t+1} as an analytic function of consumption or expectations of future consumption. For instance, with CRRA utility, $M_{t+1} = \beta \left(\frac{C_{t+1}}{C_t} \right)^{-\theta}$ while for Epstein-Zin utility $M_{t+1} = \beta \left(\frac{C_{t+1}}{C_t} \right)^{-\theta} \left(\frac{U_{t+1}}{E_t[U_{t+1}^{1-\theta}]} \right)^{\frac{1}{1-\theta}}$.

The equilibrium consists of:

- Beliefs about the transition function of the aggregate state and the realized shocks: $S_{t+1} = \Gamma(S_t, Z_{t+1})$.
- Beliefs about the realized stochastic discount factor as a function of the aggregate state and the realized shocks: $M(S_t, Z_{t+1})$.
- Beliefs about the aggregate spot wage as a function of the aggregate state: $w(S_t)$.
- Beliefs about the price of debt, as a function of the state today and the firm’s choice of coupon next period: $\Psi_i^1(S_t, S_i^t, \kappa_{i+1}^i)$.
- Firm policy functions for labor demand N_{i}^t, investment I_i^t, and financing κ_{i+1}^t; these are functions of S_t and S_i^t.

It must also be the case that given the above policy functions, all markets clear and the beliefs are consistent with simulated data, and therefore rational:

- The firm’s policy functions maximize the firm’s problem given beliefs about the wages, the stochastic discount factor, and the transition of the aggregate state.
- The labor market clears: $\sum N_{i}^t = 1$.
- The goods market clears: $C_t = \sum D_{i}^t + \kappa_{i}^t - \Psi_i^1 1_{issue} + \bar{w}_{i} N_{i}^t + T_i^t + \Phi_t^i + F_t$. Inside the sum, the terms represent, in order, dividends paid by the firm, coupon payments made by the firm, cash paid to the firm during debt issuances, wages paid by the firm, taxes paid by the firm, capital adjustment costs, and fixed costs. Note that
here we are assuming that all costs are paid by firms to individuals and are therefore consumed. The results look similar if all costs are instead wasted.

- The beliefs about M_{t+1} are consistent with goods market clearing through the household’s Euler Equation.
- The belief about the price of debt is consistent with equation \[5\].
- Beliefs about the transition of the state variables are correct. For instance if aggregate capital is part of the aggregate state vector S_t, then it must be that $K_{t+1} = (1 - \delta)K_t + \sum I_t^i$ where I_t^i is each firm’s optimal policy.

3.3 Calibration

We solve the model at a quarterly frequency using a variation of the Krusell and Smith (1998) algorithm. We discuss the solution method in the appendix. The model requires us to choose the preference parameters: β (time discount factor), θ (risk aversion), ψ (IES); the technology parameters: α and ρ (these jointly determine the labor share of output and the degree of return to scale), η (elasticity of substitution between labor and capital), δ (depreciation), f (operating cost), and ν (capital adjustment cost). Finally, we must choose μ, which determines the frequency of wage resetting, and p^{exp}, which determines the duration of corporate debt. Additionally, we must choose a process for aggregate productivity shocks, and for idiosyncratic productivity shocks. Table 6 presents parameters of the benchmark calibration.

Preferences β is set to 0.9975 per quarter, this parameter directly impacts the level of the risk-free rate and is also related to the average investment to output ratio. θ is set to 8, to get a reasonably high Sharpe ratio, while keeping risk aversion within the range recommended by Mehra and Prescott (1985). ψ (IES) is set to 2; this also helps with the Sharpe ratio, and its value is consistent with the LRR literature.

Technology δ is set to 0.0233, which is consistent with estimates of quarterly depreciation in the data. Our production function has constant elasticity of substitution (CES), which includes Cobb-Douglas production as a special case if $\eta = 0$. We set $\eta = -1$, which matches empirical estimates of the elasticity of substitution between labor and capital. In our model this elasticity is $\frac{1}{1-\eta} = 0.5$, which is consistent with estimates between 0.4 and 0.6 in a survey article by Chirinko (2008). We also present results for a Cobb-Douglas version of the model.

The parameters α and ρ are related to labor share, profit share, and the investment to capital ratio. In the benchmark calibration, we set $\rho = 0.8$ and $\alpha = 0.5$, these allow the model with $\eta = -1$ to have roughly the same profit share (0.2), labor share (0.6), and investment-to-output ratio (0.2) as the U.S. economy.

23In the Cobb-Douglas case, labor share, capital share, and profit share are $(1 - \alpha)\rho$, $\alpha \rho$, and $1 - \rho$. The more general CES case does not allow for simple analytic formulas for these relationships.
Table 6: Calibration
This table presents the model’s calibrated parameters. The model is solved at a quarterly frequency.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta)</td>
<td>Time Preference</td>
<td>0.9975</td>
</tr>
<tr>
<td>(\theta)</td>
<td>Risk Aversion</td>
<td>8</td>
</tr>
<tr>
<td>(\psi)</td>
<td>IES</td>
<td>2</td>
</tr>
<tr>
<td>((1 - \alpha)\rho)</td>
<td>Related to Labor Share</td>
<td>0.4</td>
</tr>
<tr>
<td>(\alpha + \rho - \alpha\rho)</td>
<td>Returns to Scale</td>
<td>0.9</td>
</tr>
<tr>
<td>(\frac{1}{1 - \eta})</td>
<td>Labor Capital Elasticity</td>
<td>0.5</td>
</tr>
<tr>
<td>(\delta)</td>
<td>Depreciation</td>
<td>0.0233</td>
</tr>
<tr>
<td>(\nu)</td>
<td>Capital Adj. Cost</td>
<td>8</td>
</tr>
<tr>
<td>(f)</td>
<td>Operating Cost</td>
<td>0.019</td>
</tr>
<tr>
<td>(\mu)</td>
<td>Probability No Resetting</td>
<td>0.90</td>
</tr>
<tr>
<td>(\tau)</td>
<td>Corporate tax rate</td>
<td>0.3</td>
</tr>
<tr>
<td>(p^{\text{exp}})</td>
<td>Debt expiration probability</td>
<td>0.025</td>
</tr>
</tbody>
</table>

Operating Cost \(f_t = f \ast K_t\) is a fixed cost from the perspective of the firm, however it depends on the aggregate state of the economy, in particular on aggregate capital. We choose \(f = 0.019\) to roughly match the average unlevered market-to-book ratio (1.33) and default rate (0.6% per year) in the U.S. economy. Recall that the level of productivity is non-stationary, and various endogenous quantities, such as output and capital, are co-integrated with productivity; for this reason, the operating cost must also be co-integrated with aggregate productivity. We chose \(f_t\) to be proportional to \(K_t\) because capital is the smoothest of our endogenous state variables; the results are similar when \(f_t\) is simply growing at the same rate as the economy.

Capital Adjustment Cost We choose the capital adjustment cost \(\nu = 8\) to match the ratio of the volatility of aggregate investment growth relative to the volatility of private GDP growth. This ratio is around 2.2 in the data.

Productivity Shocks In order for the standard LRR channel (IES>1) to produce high Sharpe ratios, aggregate productivity must be non-stationary with a stationary growth rate. As in Bansal and Yaron [2004] and Croce [2014], we assume that productivity growth follows an ARMA(1,1) process: \(g_{t+1} = x_t + \epsilon_{t+1}\) where \(E_t[g_{t+1}] = x_t = \rho x_{t-1} + \eta_t\) is an AR(1) process and \(\epsilon_{t+1}\) is an i.i.d. shock. We discretize \(x\) and \(\epsilon\) to have 3 states each, and choose the process to roughly match the volatility of the growth rate of real private GDP, which is 3.21% (1948-2014). \(^{24}\)

\[^{24}\] \(\epsilon = \{-0.043, 0, 0.043\}\) with equal probability. \(x = \{1.002, 1.005, 1.008\}\) with transition probabilities \(\pi_{11} = 0.938, \pi_{12} = 0.062, \pi_{13} = 0, \pi_{21} = 0.031, \pi_{22} = 0.938, \pi_{23} = 0.031, \pi_{31} = 0, \pi_{32} = 0.062, \pi_{33} = 0.938.\)
The idiosyncratic productivity of firm i is Z^i_t. This follows a three-state Markov chain $Z^i_t \in \{Z^i_1, Z^i_2, Z^i_3\}$, where $Pr(Z^i_{t+1} = Z_j | Z^i_t = Z_k) = \pi^Z_{kj} \geq 0$. The parameters of this process are identical for all firms but the process is independent across firms. Unlike aggregate productivity, the level of firm productivity is stationary. We choose parameters so that the annual autocorrelation and unconditional standard deviation of Z^i_t are 0.9 and 0.1 respectively.\footnote{The actual values are $Z_L = 0.2125$, $Z_M = 0.25$, $Z_H = 0.2875$ and the transition probabilities are $\pi^Z_{11} = 0.965$, $\pi^Z_{12} = 0.035$, $\pi^Z_{13} = 0$, $\pi^Z_{21} = 0.0175$, $\pi^Z_{22} = 0.965$, $\pi^Z_{23} = 0.0175$, $\pi^Z_{31} = 0$, $\pi^Z_{32} = 0.035$, $\pi^Z_{33} = 0.965$. We set the mean of Z^i to be 0.25 so that the average capital in our model is roughly the same as in a model solved annually with the same production function.}

Frequency of wage resetting In standard models wages are reset once per period, and employees receive the marginal product of labor as compensation. This corresponds to the $\mu = 0$ case. However, wages are far too volatile in these models relative to the data. We choose the frequency of resetting to roughly match the volatility of wages in the data. We set $\mu = 0.9$ implying an average resetting frequency of ten quarters, this may be thought of as not only explicit contract length but also as any implicit mechanism which prevents more frequent resetting. Our calibrated wage contract is consistent with recent estimates in the literature, e.g., Rich and Tracy (2004) estimate that a majority of labor contracts last between two and five years with a mean of three years; Hobijn and Sahin (2009) and Shimer (2005) estimate separation rates of around 3%/month in the U.S., implying an average job length of 2.8 years, if separations are equally likely for all workers.

Debt and Taxes We set the corporate tax rate τ to be 30%, which is consistent with the U.S. tax code and similar to Jermann and Quadrini (2012). The only parameter governing debt is the probability of expiry p^{exp}, which is set to 0.025. This implies that corporate debt is repaid, on average, after 10 years, which is close to the estimate in Guedes and Opler (1996). We chose this number because the trade-off between the tax advantage of financial leverage, and the debt overhang costs of under-investment, which are induced by long-term debt, imply a leverage ratio similar to that in the data.

4 Model Results

In this section, we study the model implications for credit markets. First, as a preliminary analysis, we show that adding rigid wages to an otherwise standard model can improve the model’s asset pricing performance. This is because rigid wages act like operating leverage, leading to more procyclical profits and dividends. On the other hand, frictionless models tend to have wages that are too volatile, profits that are too smooth, and dividends that are countercyclical. Labor induced operating leverage caused by rigid wages greatly increases equity volatility. In addition, because labor leverage varies through time and in the cross-section, expected equity returns vary through time and across firms. In models of rigid
wages, labor leverage is high when labor share is high, or when wage growth is low; the latter effect happens because after a negative productivity shock, output is falling but wages are falling by less. Favilukis and Lin (2016a) confirm that these theoretical results are empirically relevant for equity returns - wage growth negatively forecasts equity returns at the aggregate, industry, and U.S. state levels. Second, in our primary analysis, we focus on the impact of labor leverage on credit markets. We show that wage rigidity can explain much of the variation in both debt prices (credit spreads) and quantities (debt issuance policies), as observed in the data.

4.1 Aggregate Quantities

Table 7 presents aggregate statistics from our model; although the model is solved quarterly, we aggregate all results to an annual frequency. Panel A shows that the model does a reasonably good job at matching macroeconomic moments, with the volatilities of investment, consumption, and wages all about the right magnitude relative to the volatility of output.

In a standard model with Cobb-Douglas ($\eta = 0$) production and no labor market frictions ($\mu = 0$), wages are perfectly correlated with output and the labor share is constant. In our model, labor leverage arises due to a combination of wage rigidity ($\mu > 0$) and labor-capital complementarity ($\eta < 0$). Favilukis and Lin (2016b) show that these two departures from the standard model both induce labor leverage by reducing the volatility of wages and the correlation of wages with output. Because labor expenses are such a large fraction of the firm’s total expenses, labor leverage can have a large influence on asset prices.

Panel B reports the means and volatilities of the risk free rate and the excess equity return, and the average excess return on a corporate bond portfolio. Due to a relatively high IES, the risk free rate is low and smooth and there is no risk free rate puzzle. The model also generates a sizable equity premium (3%) and equity volatility (8.2%). This happens because when output falls, wages do not fall by as much, causing profits and dividends to fall more in bad times, which in turn makes equity extra risky, consistent with Favilukis and Lin (2016b). Although the equity volatility is only about half of what it is in the data, this is already a significant improvement over what a frictionless model would produce.

Leverage Panel C reports several credit market variables: the leverage ratio, the default rate, and the credit spread. Even though debt issuance is procyclical, both market and book leverage are countercyclical, as in the data, because the market value of equity is more sensitive to aggregate shocks than the market or book value of debt. Importantly, the under leverage puzzle – the quantitative observation that, in static models, trade-off theory between taxes and bankruptcy costs implies leverage that is much higher than in

26 Donangelo, Gourio, and Palacios (2016) also use complementarity between capital and labor to build labor leverage into their model.

27 We define market (book) leverage as the ratio of the market (book) value of the debt to the market value of the equity plus the market (book) value of the firm.
the data – is not present in our model. As in standard trade-off theory, firms in our model take advantage of the interest tax deduction by issuing debt. In standard trade-off theory, this force is countered by the higher probability of paying bankruptcy costs when leverage is high. In our model, explicit bankruptcy costs are absent, however, the debt overhang problem limits the amount of debt financing firms choose to use.

The debt overhang problem, as described by Myers (1977), is that firms with outstanding debt tend to invest too little. Underinvestment is optimal for equity, but decreases the firm’s enterprise value (debt plus equity). In our model, equity holders anticipate future under-investment, and limit the amount of debt issued, despite its tax advantage. Hennessy (2004), Moyen (2007), Gomes, Jermann, and Schmid (2016) have pointed out that the debt overhang problem may be more severe for long-term assets and long-term debt. We find that allowing for long-term debt, even without bankruptcy costs or financing frictions, is enough to generate a realistic leverage ratio. We also find that long-term debt overhang, and long run risk interact to make the effect quantitatively stronger.\footnote{Hennessy and Whited (2005), Hennessy and Whited (2007), DeAngelo, DeAngelo, and Whited (2007), Chen (2010), and Li, Whited, and Wu (2015), among others, have shown that a combination of financial frictions and distress costs can also generate a realistic leverage ratio; we abstract from such frictions in our model.}

Default The default rate, which is closely related to the size of idiosyncratic shocks and the fixed cost f, has a similar magnitude and volatility as in the data, although it is more countercyclical than in the data.\footnote{The default rate time-series is computed as the average across all rated bonds each year, 1948-2006.} It is countercyclical because when the economy is hit by negative shocks and revenues fall, firms are unable to reduce the interest payments on long-term debt contracts, and find it optimal to default rather than to issue more equity. This effect is magnified by the presence of wage rigidity: not only do firms need to make fixed payments to creditors, which rise relative to revenues in bad times, firms must also make semi-fixed payments to employees, which also rise relative to revenues in bad times.

Credit spread Finally, the credit spread in our model has similar magnitude, volatility, and cyclicity to the credit spread in the data. The credit spread is countercyclical because, as discussed above, expected defaults are highest after a series of negative output shocks. This is when both interest and wage obligations are highest relative to revenues. Because shocks are persistent, this is also when the credit spread is highest. Jones, Mason, and Rosenfeld (1984), Huang and Huang (2012), among others, argue that the size of the credit spread is difficult to rationalize in standard models; this is referred to as the credit spread puzzle. In our model, the credit spread is large due to an interaction between long-term corporate debt and long run risk. Bhamra, Kuehn, and Strebulaev (2010a) have previously shown that long run risk can account for a sizable credit spread, we show below that wage rigidity can further increase the credit spread. In a long run risk world, shocks to the long-term growth rate of the economy are especially important for
the price of risk. Safe long-term debt is a very good hedge against such shocks, because it promises a fixed set of payments far into the future, even if the economy experiences a long sequence of low growth. However, unlike safe long-term debt, corporate debt is likely to default exactly after such a low growth sequence. As a result, the spread between risky and safe corporate debt is large. As mentioned earlier, rigid wages magnify this effect because firms are limited in their ability to reduce their labor expenses when negative economic shocks hit. It is useful to compare this mechanism to Chen, Collin-Dufresne, and Goldstein (2009), who argue that defaults are likely to occur when the price of risk is high and use Campbell and Cochrane (1999) habit preferences to rationalize a large credit spread.

4.2 The interaction of labor and credit markets

As discussed earlier, if wages are rigid, labor leverage is especially high when wage growth is low, or when labor share is high. Our model suggests that times when labor leverage is high, as measured by low wage growth or high labor share, are times when the credit markets are especially risky. Thus, low wage growth and high labor share should be associated with stress in the credit markets.

To test this, we regress the credit spread at $t+1$, or the issuance of debt between t and $t+1$, on either labor share or on wage growth (labor expense growth when done at the firm-level). We define the issuance of debt to be the growth in the book value of debt between t and $t+1$. Table 8 reports these results for aggregate U.S. data, and aggregate model data in Panel A; and for firm-level international data, and firm-level model data in Panel B. Firm-level regressions employ the Fama and MacBeth (1973) cross-sectional approach. The results in this table are all univariate to facilitate the comparison of model and data, but the data section, above, presented a more thorough empirical analysis.

Consistent with the labor leverage intuition, wage growth (negatively) and labor share (positively) forecast credit spread. At the same time, wage growth (positively) and labor share (negatively) forecast issuance of debt. These results suggest that high labor leverage is associated with distress in the credit market. These are times when losses are high, issuance costs are high, and firms are hesitant to take on new debt. Of the eight regressions (aggregate versus firm level, credit spread versus debt growth as the dependent variable, wage growth versus labor share as the independent variable), the only statistically insignificant relationship is between aggregate labor share and aggregate debt growth (the t-statistic is -0.93).

In addition to predicting debt issuance, labor share is also strongly negatively related to contemporaneous financial leverage in the cross-section of firms. This can be seen in Figure 2 where we plot labor share against book (left panel) and market (right panel) leverage.
Table 7: Aggregate statistics

This table compares aggregate moments (annual) from the data to the model. Panel A presents macroeconomic moments. In the data all variables are real and deflated by CPI. y is GDP (private sector), c is consumption (services, non-durable, and durable), i is investment (private non-residential fixed), and w is compensation per employee. These variables are expressed either as HP filtered, or in growth rates. Note that the table reports the volatility of quantities relative to GDP volatility. The volatilities of HP filtered GDP and growth of GDP in the data are 2.42% and 3.21% respectively; the model volatilities are very close to these. Panel B presents asset pricing moments: the means and volatilities of the risk free rate (from Ken French’s webpage) and the equity return (from CRSP), the Sharpe ratio, and the average return on corporate debt (from Lin, Wang, and Wu (2014), the data return is for a value weighted, long maturity, A rated portfolio, in excess of a duration-matched Treasury bond return). The superscript e indicates the return is in excess of the risk free return. Panel C presents variables related to credit markets: market leverage, credit spread, and the default rate.

Panel A: Macro

<table>
<thead>
<tr>
<th></th>
<th>$\frac{\sigma(x)}{\sigma(y)}$</th>
<th>$\rho(x,y)$</th>
<th>AC(x)</th>
<th>$\frac{\sigma(\Delta x)}{\sigma(\Delta y)}$</th>
<th>$\rho(\Delta x, \Delta y)$</th>
<th>AC(Δx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y</td>
<td>1.00</td>
<td>1.00</td>
<td>0.31</td>
<td>1.00</td>
<td>1.00</td>
<td>0.06</td>
</tr>
<tr>
<td>c</td>
<td>0.67</td>
<td>0.89</td>
<td>0.41</td>
<td>0.66</td>
<td>0.88</td>
<td>0.29</td>
</tr>
<tr>
<td>i</td>
<td>2.36</td>
<td>0.91</td>
<td>0.46</td>
<td>2.12</td>
<td>0.90</td>
<td>0.19</td>
</tr>
<tr>
<td>w</td>
<td>0.52</td>
<td>0.59</td>
<td>0.50</td>
<td>0.55</td>
<td>0.60</td>
<td>0.39</td>
</tr>
<tr>
<td>Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y</td>
<td>1.00</td>
<td>1.00</td>
<td>0.38</td>
<td>1.00</td>
<td>1.00</td>
<td>0.28</td>
</tr>
<tr>
<td>c</td>
<td>0.69</td>
<td>0.97</td>
<td>0.42</td>
<td>0.74</td>
<td>0.97</td>
<td>0.43</td>
</tr>
<tr>
<td>i</td>
<td>2.31</td>
<td>0.97</td>
<td>0.35</td>
<td>2.18</td>
<td>0.95</td>
<td>0.14</td>
</tr>
<tr>
<td>w</td>
<td>0.40</td>
<td>0.52</td>
<td>0.69</td>
<td>0.51</td>
<td>0.59</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Panel B: Asset pricing

<table>
<thead>
<tr>
<th></th>
<th>$E[R_F]$</th>
<th>$\sigma(R_F)$</th>
<th>$E[R_{E,e}]$</th>
<th>$\sigma(R_{E,e})$</th>
<th>SR</th>
<th>$E[R_{D,e}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>1.10</td>
<td>2.27</td>
<td>8.42</td>
<td>18.08</td>
<td>0.47</td>
<td>1.20</td>
</tr>
<tr>
<td>Model</td>
<td>0.79</td>
<td>0.48</td>
<td>3.01</td>
<td>8.19</td>
<td>0.37</td>
<td>0.82</td>
</tr>
</tbody>
</table>

Panel C: Credit market

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E[x]$</td>
<td>$\sigma(x)$</td>
<td>$\rho(x, \Delta y)$</td>
</tr>
<tr>
<td>LEVM</td>
<td>0.44</td>
<td>0.09</td>
</tr>
<tr>
<td>CS</td>
<td>0.95</td>
<td>0.40</td>
</tr>
<tr>
<td>DEF</td>
<td>0.82</td>
<td>0.98</td>
</tr>
</tbody>
</table>

4.3 Inspecting the mechanism

We now discuss how various model ingredients contribute to the results, by comparing several alternative models. In Table 9 we present data moments (1st row), results from our
Table 8: Credit markets are related to labor markets

This table presents univariate regressions of the form $y_{t+1} = a + bx_t + \epsilon_{t+1}$ where y_{t+1} is either the credit spread realized at $t+1$, or debt growth between t and $t+1$; and where x_t is either the labor share at t, or the wage growth (labor expense growth for firm level) between $t-1$ and t. Panel A presents these regressions for aggregate variables and Panel B for firm-level variables. The model’s t-statistics for simulated data were computed as an average over many samples, each the same size as actual data. We do not do this for firm level simulated data, because the firm data is an unbalanced panel with data from various countries over various time periods.

<table>
<thead>
<tr>
<th>Panel A: Aggregate</th>
<th></th>
<th>Panel B: Firm-level</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$y = CS_{t+1}$</td>
<td>$y = \Delta DEBT_{t+1}$</td>
<td>$y = \Delta W$</td>
<td>$x = \Delta W$</td>
</tr>
<tr>
<td>$x = \Delta W$</td>
<td>$x = LS$</td>
<td>$x = \Delta W$</td>
<td>$x = LS$</td>
</tr>
<tr>
<td>Data</td>
<td></td>
<td>Data</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>-0.154</td>
<td>-0.092</td>
<td>0.043</td>
</tr>
<tr>
<td>$t(b)$</td>
<td>(4.15)</td>
<td>(-7.64)</td>
<td>(5.47)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.28</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Model</td>
<td></td>
<td>Model</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>-0.114</td>
<td>-0.022</td>
<td>0.045</td>
</tr>
<tr>
<td>$t(b)$</td>
<td>(-9.56)</td>
<td>(-7.64)</td>
<td>(5.47)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.59</td>
<td>0.15</td>
<td>0.07</td>
</tr>
</tbody>
</table>

baseline model (2nd row), a model with no labor market frictions (3rd row), a model with Cobb-Douglas production (4th row), a model with Cobb-Douglas production and no labor market frictions (5th row), and a model with short-term debt (6th row). In panel A we present several moments related to asset prices and credit markets from these models and the data. Panels B (aggregate) and C (firm-level) highlight the effect of labor leverage on credit markets. In these two panels we present correlations of the credit spread with either residual wage growth, or residual labor share; and correlations of debt issuance (defined as

30 For each model, we change the fixed cost f and adjustment cost ν to match the market-to-book ratio and investment volatility, as in the baseline model. For the Cobb-Douglas models, we also change α to 0.25, implying an average labor share of 0.6 and profit share of 0.2, as in the baseline model. For the short-term debt model, the debt-overhang channel is not active, therefore we reduce the recovery rate at default from 100% to get an intermediate level of the capital structure; we choose 91% to match the default rate.
the growth in the book value of debt) with either residual wage growth, or residual labor share. We define residual wage growth as the residual from regressing wage growth on output growth (sales growth in firm level regressions), and similarly for labor share and labor expense growth.

The reason we compute residual wage growth and labor share is that in the model, output growth has predictive power for credit spread and debt growth that is independent of the labor leverage effect, and output growth is correlated with labor market variables. We are interested in isolating just the effect of labor leverage. Whether we compute raw correlations (not reported), or residual correlations, has no effect on the sign and little effect on the magnitude of the correlation in the data or in our baseline model. However, as will be discussed below, it does make a difference for the frictionless, Cobb-Douglas model.

First, consider a model identical to our baseline model, but with no labor market frictions (CES, \(\mu = 0\)). As discussed in Favilukis and Lin (2016b), even in a frictionless model (\(\mu = 0\), when labor and capital are more complementary (\(\eta < 0\)) than in the Cobb-Douglas case (\(\eta = 0\)), the wage is smoother than output. Smooth wages imply that labor payments will induce operating leverage for the same reason as in a model with infrequent renegotiation of contracts. Thus, as in our baseline model, Panels B and C show that in this model, wage growth is negatively associated with credit spreads, and positively with debt growth; labor share is positively associated with credit spreads, and negatively with debt growth. However, Panel A shows that without labor market frictions, the model implies credit spreads and default rates that are too low. In addition, the equity premium and volatility are also lower than the data and the baseline model.

Now, consider a model identical to our baseline model, but with Cobb-Douglas production (CD, \(\mu = 0.9\)). Most of the intuition from our baseline model carries over to this model. Thus, labor share is positively associated with credit spreads, and negatively with debt growth for both aggregate and firm level simulated data; wage growth is negatively associated with credit spreads, and positively with debt growth for aggregate simulated data. However, at the firm level, the relationship of labor expense growth with credit market variables is mostly gone when controlling for output growth. This is not the case in the data or in our baseline model. Additionally, with \(\eta = 0\), the equity return is far less volatile. Finally, because the market value of equity is not procyclical enough, market leverage is actually procyclical, unlike the data and our baseline model. Thus, the model with CES production (\(\eta = -1\)) is a much better fit to the data.

Next, consider a model with Cobb-Douglas production and frictionless labor markets

\footnote{The predictability of output growth is driven by its high correlation with productivity growth, which is inversely related to the stress in credit market, and by its correlation with interest rates, which are positively related to the tax advantage of debt.}

\footnote{Although the signs of the correlations in the firm level data are consistent with our intuition, their magnitudes are relatively low. The reason for this is that firms in the data are quite diverse. When we control for country fixed effects, the magnitudes of the correlations rise.}
In this model wage growth is equal to output growth, and the labor share is constant. Labor share now has zero association with either the credit spread or debt growth, regardless of whether we use raw or residual labor share. When we control for output growth, there is zero association between residual wage growth and either the credit spread or debt growth. Raw wage growth is still negatively associated with credit spreads, and positively with debt growth (not reported), but only because of its perfect correlation with output growth. In all of our empirical results, we control for output growth and find that wage growth is still a significant predictor of credit spreads and of debt growth – a fact that a frictionless Cobb-Douglas model cannot match.

Finally, we compare the baseline model to a model with short-term debt. With short-term debt, the market leverage ratio is far too high, this is the under-leverage puzzle. If we were to lower the recovery rate, the default rate would become too low, but leverage would not fall by much. This is because firms do not face much uncertainty in the short-term, and can issue a high amount of short-term debt with a negligible chance of default. The credit spread is also far too low in this model, because with short-term debt, defaults are more likely to happen for idiosyncratic reasons, and are less correlated with priced risk. Counter-factually, the leverage ratio is highly procyclical because firms issue much more debt when the tax advantage of debt is higher. This happens in good times, when interest rates are high. In the long-term debt model, the tax advantage of debt is also higher in good times, and debt issuance is also procyclical. However, firms are hesitant to issue too much debt because they fear having high coupon payments when a downturn comes. Thus, in the long-term debt model and in the data, the leverage ratio is countercyclical because firm value is strongly procyclical. Overall, the short-term debt model is poor quantitative fit for credit market data.

The short-term debt model also fails to produce the kinds of correlations that we document in the data and in our baseline model. One reason for this, is that as discussed earlier, firms face very little short-term risk. Another reason is that, consistent with the labor leverage channel, there is a strong negative association between labor share, and financial leverage. Thus, low labor share firms are not necessarily less risky, because they have so much financial leverage. As shown in Figure 2, this negative association between labor share and financial leverage is also present in our baseline model, but this effect is much stronger in the short-term debt model.

To summarize, our model’s key features are frictions in the labor market, a high degree of complementarity between capital and labor, and a long maturity of debt. When we turn off some of these features one at a time, the model can still match some parts of the data, however all three features are necessary to produce sizable credit spreads and realistic default rates, a realistic leverage ratio, volatile debt and equity returns, and a positive

\[\text{This counter-factually high leverage is also why this model has a higher equity volatility.} \]
relationship between credit market stress (high credit spreads or low debt growth) with high labor share or low wage growth.

5 Conclusion

We argue that understanding labor markets is crucial for understanding credit markets. We solve a model with labor market frictions and show that in such a model, the credit spread is predicted by wage growth (negatively) and labor share (positively). Conversely, debt growth is predicted by wage growth (positively) and labor share (negatively). This is because each of these variables is related to labor induced operating leverage, which makes debt more risky. In addition to time-series dynamics, the model performs well quantitatively along several dimensions, including the average size of the credit spread, the default rate, the financial leverage ratio, and the mean and volatility of equity returns. We explore this model’s implications in both aggregate and firm-level data and find broad support for the labor leverage channel.

Regarding credit risk, we find that the aggregate U.S. Baa-Aaa credit spread is negatively predicted by wage growth and positively by labor share. Similarly, we find that the firm-level Moody-KMV expected default probability (for a large cross-section of international firms) is negatively predicted by labor expense growth, and positively by labor share.

Regarding capital structure, we find that the growth rate of aggregate debt in the U.S. is positively predicted by wage growth and negatively by labor share. Similarly, we find that the firm-level debt growth (for a large cross-section of international firms) is positively predicted by labor expense growth, and negatively by labor share.

Finally, we find that firms with higher labor share tend to have lower financial leverage, suggesting that labor leverage and financial leverage are substitutes.

Taken together, these results suggest that labor markets have an important effect on credit markets. Information from labor markets should be considered when computing the cost of debt capital, and the decision to issue debt.

References

Table 9: Model comparisons

This table compares selected results from several alternative models to our baseline model. Our baseline model has \(\eta = -1 \) (CES labor-capital complementarity), \(\mu = 0.9 \) (wage rigidity), and long-term debt; it is in the second row of every panel, after the data. In the third row, the model is identical to the baseline but with \(\mu = 0 \) (no rigidity), in the fourth row the model is identical to the baseline but with \(\eta = 0 \) (Cobb-Douglas), in the fifth row the model is identical to the baseline but with \(\eta = 0 \) and \(\mu = 0.0 \) (Cobb-Douglas and no rigidity), in the sixth row the model is identical to the baseline but with short-term debt. Panel A presents the volatility of the wage, the average excess return and volatility of equity, the average excess return on debt, the average (market) leverage, credit spread, and default probability, as well as the correlation of leverage with output growth. Panel B presents correlations between the credit spread at \(t + 1 \) and either residual wage growth or residual labor share at \(t \); or correlations between debt (book-value) growth between \(t \) and \(t + 1 \) and either residual wage growth or residual labor share at \(t \). These correlations are computed from aggregate time-series data. Residuals are computed by first regressing either wage growth, or labor share on output growth. Panel C is similar to Panel B, but uses pooled firm-level data.

Panel A: Selected moments

<table>
<thead>
<tr>
<th>(\eta)</th>
<th>(\mu)</th>
<th>Debt</th>
<th>(\sigma(\Delta W))</th>
<th>(E[R^{E,e}])</th>
<th>(\sigma(R^{E,e}))</th>
<th>(E[R^{L,e}])</th>
<th>LEVM</th>
<th>CS</th>
<th>DEF</th>
<th>(\rho(LEV, \Delta y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td></td>
</tr>
<tr>
<td>CES 0.9</td>
<td>Long</td>
<td></td>
<td>1.77</td>
<td>8.42</td>
<td>18.08</td>
<td>1.20</td>
<td>0.44</td>
<td>0.95</td>
<td>0.82</td>
<td>-0.24</td>
</tr>
<tr>
<td>CES 0.0</td>
<td>Long</td>
<td></td>
<td>2.45</td>
<td>1.99</td>
<td>6.38</td>
<td>0.46</td>
<td>0.39</td>
<td>0.73</td>
<td>0.39</td>
<td>-0.20</td>
</tr>
<tr>
<td>CD 0.9</td>
<td>Long</td>
<td></td>
<td>1.72</td>
<td>1.15</td>
<td>3.71</td>
<td>0.82</td>
<td>0.16</td>
<td>2.20</td>
<td>0.75</td>
<td>0.21</td>
</tr>
<tr>
<td>CD 0.0</td>
<td>Long</td>
<td></td>
<td>2.94</td>
<td>0.77</td>
<td>2.40</td>
<td>0.52</td>
<td>0.16</td>
<td>1.27</td>
<td>0.34</td>
<td>0.20</td>
</tr>
<tr>
<td>CES 0.9</td>
<td>Short</td>
<td></td>
<td>1.76</td>
<td>3.83</td>
<td>12.58</td>
<td>0.09</td>
<td>0.62</td>
<td>0.19</td>
<td>0.57</td>
<td>0.67</td>
</tr>
</tbody>
</table>

Panel B: Aggregate correlations

<table>
<thead>
<tr>
<th>(\eta)</th>
<th>(\mu)</th>
<th>Debt</th>
<th>(\rho(\Delta W^{res}, \Delta DEBT))</th>
<th>(\rho(LS^{res}, \Delta DEBT))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CES 0.9</td>
<td>Long</td>
<td></td>
<td>-0.41</td>
<td>0.27</td>
</tr>
<tr>
<td>CES 0.0</td>
<td>Long</td>
<td></td>
<td>-0.55</td>
<td>0.57</td>
</tr>
<tr>
<td>CD 0.9</td>
<td>Long</td>
<td></td>
<td>-0.39</td>
<td>0.39</td>
</tr>
<tr>
<td>CD 0.0</td>
<td>Long</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>CES 0.9</td>
<td>Short</td>
<td></td>
<td>0.48</td>
<td>-0.46</td>
</tr>
</tbody>
</table>

Panel C: Firm level correlations

<table>
<thead>
<tr>
<th>(\eta)</th>
<th>(\mu)</th>
<th>Debt</th>
<th>(\rho(\Delta W^{res}, \Delta DEBT))</th>
<th>(\rho(LS^{res}, \Delta DEBT))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CES 0.9</td>
<td>Long</td>
<td></td>
<td>-0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>CES 0.0</td>
<td>Long</td>
<td></td>
<td>-0.25</td>
<td>0.08</td>
</tr>
<tr>
<td>CD 0.9</td>
<td>Long</td>
<td></td>
<td>-0.40</td>
<td>0.24</td>
</tr>
<tr>
<td>CD 0.0</td>
<td>Long</td>
<td></td>
<td>0.01</td>
<td>0.06</td>
</tr>
<tr>
<td>CES 0.9</td>
<td>Short</td>
<td></td>
<td>-0.03</td>
<td>-0.64</td>
</tr>
</tbody>
</table>

A Online appendix

A.1 Making the Model Stationary

Note that the model is not stationary, because Z_t is not stationary. In order to solve it numerically, we must rewrite it in terms of stationary quantities. If a balanced growth path exists, and if this problem, detrended by some quantity, has a stationary solution, then that quantity must be Z_t'.[34]

To see this, define $k_t' = \frac{K_t}{Z_t}$ and plug it into the production function:

$$
Y_t^i = Z_t^i \left((\alpha(K_t^i)^\eta + (1 - \alpha)(Z_t^i N_t^i)^{\eta p}) \right)^{\frac{1}{\eta}} = Z_t^i \left((\alpha(k_t'^i)^\eta + (1 - \alpha)(N_t^i)^{\eta p}) \right)^{\frac{1}{\eta}} Z_t' = y_t' Z_t' \quad (11)
$$

We will now rewrite the rest of the firm’s problem in terms of detrended quantities. The firm’s original problem is:

$$
V(Z_t^i, K_t^i, N_t^i, \bar{W}_{t-1}, \kappa_t^i, Z_t, x_t, \tilde{K}_t, \bar{W}_{t-1}) = \max \left(0, \max_{I_t^i, \tau, \kappa_t^i} \left(1 - \tau\right) \left(Y_t^i - \bar{W}_{t-1} N_t^i - F_t - \kappa_t^i \right) + \tau\delta K_t^i - I_t^i - \Phi(K_t^i, I_t^i) + \Psi_t^i_{issue} + E_t[M_{t+1} V(Z_{t+1}^i, K_{t+1}^i, \bar{W}_{t}, \kappa_{t+1}^i; Z_{t+1}, x_{t+1}, \tilde{K}_{t+1}, \bar{W}_t)] \right) \quad (12)
$$

Where Z_t^i is the idiosyncratic productivity, K_t^i is the firm’s individual capital, N_t^i is the firm’s employment last period, κ_t^i is the current coupon payment paid, Ψ_t^i are the proceeds from issuing new debt, \bar{W}_{t-1} is the firm’s average wage last period, Z_t is aggregate productivity, x_t is the conditional mean of aggregate productivity growth, \bar{W}_{t-1} is the aggregate average wage from last period, and W_t is the spot wage this period.[35] Following Krusell and Smith (1998) the state space potentially contains all information about the joint distribution of capital and productivity. \tilde{K}_t is a vector of aggregate state variables which summarize the distribution of capital, it includes the first moment or average level of capital K_t, but may include higher moments, as suggested by Krusell and Smith (1998).

Households have beliefs about the spot wage W_t and aggregate investment I_t as a function of the aggregate state, about the evolution of the aggregate quantities M_{t+1} and \tilde{K}_t, and about the price of debt Ψ_t^i. The price of debt is a function of the aggregate state at t, the firm’s productivity at t, and the choices firm makes at t that impact its state at $t+1$.[36]

[34] No other quantity X allows $\tilde{X} = f(\tilde{X})$ where $f(.)$ is not a function of Z.

[35] Note that we changed the notation slightly from the main text. Here, wage related variables are written as capital letters, so that we can write the detrended variable as lower case.

[36] In particular, beliefs at t about the firm’s future repayment ability depend on $\kappa_t^i, K_{t+1}^i, \bar{W}_t, \bar{W}_{t-1}^i$, and N_t^i which are all functions of choices the firm makes at t. This will be explained in more detail in the next section.
The aggregate wage and average capital evolve as

\[
\bar{W}_t = \mu \bar{W}_{t-1} + (1 - \mu)W_t
\]

\[
K_{t+1} = (1 - \delta)K_t + I_t
\] (13)

The evolution of the individual state variables depend on the firm’s choices:

\[
K_{t+1}^i = (1 - \delta)K_t^i + I_t^i
\]

\[
\bar{w}_t = \frac{\bar{W}_{t+1}^i - \mu N_{t+1}^i - (N_{t+1}^i - N_t^i)\mu}{N_t^i} W_t
\] (14)

We can define \(k_t = \frac{K_t}{Z_t^i}, \bar{k}_t = \frac{\bar{K}_t}{Z_t^i} \), \(i_t = \frac{I_t^i}{Z_t^i}, \bar{g}_t = \frac{\bar{g}_t^i}{Z_t^i}, \bar{\kappa}_t^i = \frac{\kappa_t^i}{Z_t^i}, w_t = \frac{\bar{W}_t}{Z_{t+1}^i}, \bar{w}_t = \frac{\bar{W}_t}{Z_{t+1}^i} \), and \(\bar{w}_t = \frac{\bar{W}_t}{Z_{t+1}^i} \) (not that the timing of \(\bar{w}_t \) and \(\bar{w}_t \) differs from the others).

With this normalization, it can be shown by induction that the value function is linear in \(Z_t^i \). Suppose this is true at \(t+1 \):

\[
V(Z_{t+1}^i, K_{t+1}^i, N_{t+1}^i, \bar{w}_t, \bar{\kappa}_{t+1}^i; Z_t^i, k_t, \bar{w}_t) = Z_t^i v(Z_{t+1}^i, k_{t+1}^i, N_{t+1}^i, \bar{w}_{t+1}, \bar{\kappa}_{t+1}^i; 1, x_{t+1}, \bar{k}_{t+1}, \bar{w}_t)
\] (15)

Then we can rewrite the firm’s problem as

\[
v(Z_t^i, k_t^i, N_{t-1}^i, \bar{w}_{t-1}, \bar{\kappa}_{t-1}^i; x_t, k_t, \bar{w}_{t-1}) = \max \left(0, \max_{i_t^i, N_{t-1}^i, \bar{\kappa}_{t-1}^i} \left((1 - \tau) (\bar{g}_t^i - \bar{w}_t N_t^i - F_t - \bar{\kappa}_t^i) + \tau \delta K_t^i \right) \right)
\]

\[
- \frac{i_t^i}{\bar{w}_t} - \Phi(k_t^i, \bar{\kappa}_t^i) + \bar{g}_t^i \chi_{\text{Issue}}
\]

\[
+ E_t \left(\frac{Z_{t+1}^i}{Z_t^i} \right)^\beta M_{t+1} v(Z_{t+1}^i, k_{t+1}^i, N_{t+1}^i, \bar{w}_t, \bar{\kappa}_{t+1}^i; x_{t+1}, \bar{k}_t, \bar{w}_t) \right)
\] (16)

where the aggregate capital and wage evolve as

\[
k_{t+1} = ((1 - \delta)k_t + i_t) \left(\frac{Z_{t+1}^i}{Z_t^i} \right)^{-\rho}
\]

\[
\bar{w}_t = (\mu \bar{w}_{t-1} + (1 - \mu)w_t) \left(\frac{Z_{t+1}^i}{Z_t^i} \right)^{-\rho}
\] (17)

Note that past employment \(N_{t-1}^i \) is also part of the state; we are not including its evolution in this equation because its choice at \(t \) is exactly equal to its value at \(t + 1 \).

For notational convenience, we have suppressed the value function’s dependence on the level of productivity (first argument of the aggregate state) because in the detrended value function, that argument is always equal to one.
and the individual state variables evolve as:

\[k_{i+1} = ((1 - \delta) k_i + i_i) \left(\frac{Z_{i+1}}{Z_t} \right)^{-\rho} \]

\[w_i = \left(\frac{N_{i-1} \mu + (N_i - N_{i-1} \mu) w_i}{N_i} \right) \left(\frac{Z_{i+1}}{Z_t} \right)^{-\rho} \]

\[\widehat{\kappa}_{i+1} = \begin{cases} 0 & \text{if expiry or default at } t + 1 \\ \kappa_i \left(\frac{Z_{i+1}}{Z_t} \right)^{-\rho} & \text{otherwise} \end{cases} \quad (18) \]

As long as the firm believes that \(\left(\frac{Z_{i+1}}{Z_t} \right)^{\rho} \), \(M_{t+1} \), \(k_{t+1} \), \(w_{t+1} \), and \(\widehat{\kappa}_i \) are stationary (by stationary, we mean that they do not depend on the level of aggregate productivity \(Z_t \)), then this is a well defined problem, similar to many standard problems in finance and economics. Whether it has a finite solution depends on the parameters (for example, if \(M_{t+1} = \beta > 1 \) then it likely does not have a finite solution), however this is a problem that can be solved numerically by dynamic programming if a finite solution exists. If a finite solution exists, then the firm’s optimal policy \((i_i, N_i, \widehat{\kappa}_i) \) will also be stationary.

Note that if a finite solution to this problem exists, then all endogenous firm level variables will be stationary when detrended by \(Z_t^{\rho} \). A stationary individual capital \(k_i \) implies that the aggregate detrended capital stock \(k_{t+1} = \sum k_{i+1} \) and aggregate investment are stationary too. A stationary labor demand \(N_i \) implies that the aggregate labor demand \(N_t = \sum N_i \) is stationary too. In equilibrium, the aggregate labor demand is equal to the aggregate labor supply, which is one, but since the aggregate labor demand is a simple function of the detrended spot wage, inverting the relationship implies a stationary detrended spot wage as well. A stationary detrended output puts an upper bound on coupon payments, which implies a stationary price of debt.

Thus, if the firm believes that the detrended capital, average wage, spot wage, and bond price are stationary, and if the firm’s detrended problem given these beliefs has a finite solution, then indeed these quantities must be stationary.

Finally, we can rewrite the stochastic discount factor and bond price in terms of stationary quantities. The original utility function and stochastic discount factor were defined as:

\[C_t = Y_t - I_t \]

\[U_t = \left(C_t^{1-\psi} + \beta E_t[U_{t+1}^{1-\theta}] \right)^{-\frac{1}{1-\psi}} \]

\[M_{t+1} = \beta \left(\frac{U_{t+1}}{E_t[U_{t+1}^{1-\theta}]} \right)^{\frac{1}{1-\theta}} \left(\frac{C_{t+1}}{C_t} \right)^{-\frac{1}{\psi}} \]

Define \(c_t = \frac{C_t}{Z_t^{\psi}} \) and \(u_t = \frac{U_t}{Z_t^{\psi}} \) and note that the firm’s optimal policy implies that \(c_t = y_t - i_t \).
is stationary. We can rewrite the above equations as:

\[
c_t = y_t - i_t \\
u_t = \left(\frac{1}{c_t^{1-\psi}} + \beta E_t \left(\frac{Z_{t+1}}{Z_t} \right)^{\rho} u_{t+1}^{1-\theta} \frac{1}{1-\psi} \right)^{-\frac{1}{\psi}} \\
M_{t+1} = \beta \left(\frac{\left(\frac{Z_{t+1}}{Z_t} \right)^{\rho} u_{t+1}^{1-\theta}}{E_t \left(\frac{Z_{t+1}}{Z_t} \right)^{\rho} a_{t+1}^{1-\theta} \frac{1}{1-\psi}} \right)^{-\theta} \left(\frac{c_{t+1}}{c_t} \right) - \frac{1}{\psi} \left(\frac{Z_{t+1}}{Z_t} \right)^{\phi}
\]

which are stationary as long as \(c_t\) is stationary.

The original equation for the bond price is

\[
\Psi^i_t = E_t M_{t+1} \left[1_{\{\text{exp}\}} \times 0 + 1_{\{V_{t+1} \leq 0\}} \times V_{t+1}^0 + \left(1 - 1_{\{\text{exp}\}} - 1_{\{V_{t+1} \leq 0\}} \right) \left(\kappa^i_{t+1} + \Psi^i_{t+1} \right) \right],
\]

This can be rewritten as

\[
\hat{g}^i_t = E_t M_{t+1} \left(\frac{Z_{t+1}}{Z_t} \right)^{\rho} \left[1_{\{\text{exp}\}} \times 0 + 1_{\{\text{v+1} \leq 0\}} \times v_{t+1}^0 + \left(1 - 1_{\{\text{exp}\}} - 1_{\{v_{t+1} \leq 0\}} \right) \left(\hat{\kappa}^i_{t+1} + \hat{g}^i_{t+1} \right) \right],
\]

where \(v_{t+1}^0\) is the detrended value of a firm with zero debt.

A.2 Numerical Algorithm

We will now describe the numerical algorithm used to solve the stationary problem above, which is described by equations 16, 17, 18, 19, and 20. The algorithm is a variation of the algorithm in Krusell and Smith (1998). Generally, there is no proof that an equilibrium exists. This solution method is referred to as an approximate bounded rational equilibrium.

It consists of performing two steps and then repeating them until convergence. The first step solves the firm’s problem given a particular set of beliefs; the inputs are beliefs and the outputs are policy functions. The second step updates these beliefs from simulating the economy; the inputs are policy functions and the outputs are beliefs. These steps are repeated until the beliefs have converged and are consistent with simulated data. We will refer to the sequence of step one, followed by step two as a single outer iteration. This is to differentiate these iterations from the value function iteration which occurs during step one.

In the previous section, for generality, we allowed the aggregate state space to include a vector of variables describing the distribution of capital across firms, \(\hat{k}_t\). However, in practice, we only keep track of the first moment of capital, therefore \(\hat{k}_t = \{k_t\}\). To ease notation, we summarize the aggregate state by the vector \(\Theta_t = \{x_t, k_t, \bar{w}_{t-1}\}\), which includes expected productivity growth, average capital, and past average wage. The individual state space is summarized by the vector \(\Theta^i_t = \{Z^i_t, k^i_t, N^i_{t-1}, \bar{w}^i_{t-1}, \bar{\kappa}^i_t\}\), which includes individual
productivity, capital, past labor, past average wage, and the current coupon due. For numerical reasons, we find it better to rescale two of the state variables. In particular instead of \bar{w}_{i-1} we use $N_{i-1} \bar{w}_{i-1}$. This rescaling is innocuous because one can easily go back and forth. It can be shown that when there is no debt or adjustment costs, the firm’s problem is linear in $N_{i-1} \bar{w}_{i-1}$ and N_{i-1}, and thus we believe the rescaling leads to a more efficient algorithm. Further, it allows us to check the accuracy of our solution in the special case of $\nu = 0$. Instead of \bar{w}_{t-1}, we use \bar{w}_{t-1}, scaled by the aggregate marginal product of labor. This is done because \bar{w}_{t-1} is highly correlated with k_t, which makes formation of beliefs more difficult without rescaling. Further, when two state variables are correlated, large areas of the grid are left unused, which wastes computing power. The scaling reduces this correlation. Even though we rescale the variables in our code, we write everything in terms of the original variables here, to make the exposition easier.

The grid sizes are 43 for firm capital k_i^t, 18 for the firm’s past average wage \bar{w}_{i-1}, 13 for the firm’s past employment N_{i-1}, 13 for the firm’s owed coupon (which is equivalent to the firm’s book value of debt) $\hat{\kappa}_{i-1}$, 20 for aggregate capital k_t, 6 for the aggregate past average wage \bar{w}_{t-1}, 3 for the Markov chain governing the conditional expectation of aggregate productivity growth x_t, 3 for the short-run shock to productivity growth ϵ, and 3 for the Markov chain governing firm productivity Z_{i^t}. We have experimented with grid sizes extensively and set them large enough that our results are not affected by any further increases. It is important to set the grid edges some distance away from where typical variables reside, despite these values being “off-equilibrium.” At the same time, setting the edges too far away from model equilibrium will require a very large number of grid points, which is numerically infeasible; therefore, some experimentation is in order. We find that the results are more sensitive to the sizes of firm level grids than to the aggregate grids.

The problem is solved using Fortran 77, and parallelized using OpenMP. It then runs on eight parallel processors. The full model takes about 3 hours per outer iteration and requires 50 to 100 outer iterations to converge. We are appreciative of The Ohio State University high-performance computing center for the computational resources.

Step 1. We begin this step with beliefs about aggregate investment, the spot wage, and aggregate consumption as a function of the aggregate state. There is also a belief about the stochastic discount factor as a function of the aggregate state, and the realized shock next period. These beliefs are $\sum i^i_t = n^a(\Theta_t)$, $w_t = \omega^a(\Theta_t)$, $c_t = \zeta^a(\Theta_t)$ and $M_{t+1} = M^n(\Theta_t, j_{t+1})$, where j_{t+1} is the discrete realization of the aggregate productivity shock. Here n indicates the number of the outer iteration.

Additionally, there is a belief about the bond price. The bond price deserves a special explanation. The bond price at t (q_t^j) must depend on the aggregate state Θ_t, since this affects beliefs about both aggregate productivity, and the stochastic discount factor; the first of which affects default probability, and the second discounting of future cash flows. It must
also depend on individual productivity Z^i_t since this affects beliefs about future productivity and the firm’s ability to repay. Importantly, it must depend on the firm’s choice of coupon payments $\bar{\kappa}^i_t$, thus, the firm receives a menu of bond prices over all possible choices of coupons.

It must also depend on the firm’s other characteristics: its capital level, past average wage, and past labor. However, here we must make a modeling choice. If the firm chooses its time t investment i^i_t and labor N^i_t after the time t debt has been issued, then the price of debt should depend on $\{k^i_t, N^i_{t-1}, \bar{\mu}^i_{t-1}\}$. However, if the firm chooses its time t investment and labor concurrently to issuing its time t debt, then the price of debt will depend on the firm’s choices, just like it does on its choice of coupon payments.

We choose the later approach, because we want to prevent the firm from gaming the creditors. Consider the following example. If the price of debt depended only on time t capital k^i_t, then the firm could issue a large amount of debt, then immediately pay a large dividend, leaving it with a tiny capital stock going forward, and high likelihood of future default. Of course, creditors would anticipate this and demand very high returns. This scenario does not strike us as a realistic description of lending markets. For this reason, the price of debt is not a function of the firm’s capital at t (k^i_t), but rather is a function of its choice of capital for $t+1$, which is known at t $(k^i_t(1-\delta)+\bar{i}^i_t)$. Similarly, it is not a function of the firm’s time t lagged labor (N^i_{t-1}) and lagged average wage $(\bar{\mu}^i_{t-1})$, but rather a function of the firm’s time t choice of labor (N^i_t), and its average wage $(\bar{\mu}^i_tN^i_{t-1}+\mu N^i_t)$. The beliefs about the bond price are defined over the same grids over which the aggregate and individual state spaces are defined. We express the belief about the bond price as

$$\hat{\varpi}^i_t = \sigma^n(\Theta^i_t, Z^i_t, k^i_t(1-\delta)+\bar{i}^i_t, N^i_t, \bar{\mu}^i_tN^i_{t-1}+\mu N^i_t)$$

which depends explicitly on the firm’s choices $\{\bar{i}^i_t, N^i_t, \bar{\mu}^i_t\}$

These beliefs, together with equations 16, 17, and 18, specify a well-defined partial equilibrium firm problem. We solve this problem using value function iteration.

Once the value function iteration is complete, it produces three policy functions for the firm: investment $i^i_t(\Theta^i_t, \Theta_t)$, employment $N^i_t(\Theta^i_t, \Theta_t)$, and choice of coupon payment $\bar{\kappa}^i_{t+1}(\Theta^i_t, \Theta_t)$. Recall that the coupon payment is a choice only for firms who are resetting their debt, all others (who defaulted or whose debt expired) have no coupon payments.

The value function iteration also produces an equity value as a function of the state $v^n(\Theta^i_t, \Theta_t)$, and a default policy because the firm defaults any time the equity value is less than or equal to zero.

Step 2. In this step we use the policy functions to simulate the economy and then use simulated data to update the beliefs. We simulate the economy for 10,000 firms, and a higher number does not affect any of our results. Before beginning the simulation we must
specify an initial distribution of idiosyncratic productivity, capital, past wages, and past labor. We simulate the economy for 3,500 periods and throw away the first 500 periods to let the simulation settle into its normal behavior; this also assures that the initial distribution has no effect on our results.

One complication during the simulation is that we must clear the labor market each period. The difficulty is that each firm’s choice of labor at t is a function of the state variables at t. The state variables are fixed and known at the beginning of t, thus labor is determined at the start of the period. The firms have beliefs about the spot wage as a function of the state; however, before convergence these beliefs may be incorrect, and, therefore, labor demand may not equal labor supply. The actual market clearing spot wage (as opposed to the belief) is undefined because at this stage in the simulation, nothing can change the state variables or firms’ labor demand. To deal with this problem we use the following workaround: During the simulation, we assume that each firm’s labor demand is $N^t_i = N^i(Z^t_i, k^t_i, N^t_{i-1}, \bar{w}^t_{i-1}; \Theta^t_i)\omega^t_n(\Theta^t_i)$, where $\omega^t_n(\Theta^t_i)$ is the belief about the spot wage used during the value function iteration step. Note that once our algorithm has converged, the belief is consistent with the spot wage. However, before convergence we are able to pick the spot wage in any period so as to clear markets, that is $w_t = \omega^t_n(\Theta^t_i)\frac{\sum N^t_i(Z^t_i, k^t_i, N^t_{i-1}, \bar{w}^t_{i-1}; \Theta^t_i)}{N_t}$.

Once the simulation is complete, we have a time series for all relevant aggregate variables. We use these time series to update the beliefs. Krusell and Smith (1998) have suggested regressing the relevant variables on the state variables. However we find this problematic because linear regressions imply strange behavior “off-equilibrium,” which leads to problems in the value-function iteration step. Adding higher-order terms does not help because it leads to overfitting.

We propose an alternative, nonparametric approach. We will define a belief separately for each grid point in the aggregate state space. There are two types of grid points in the aggregate state space: those that are near where the simulated data resides (“on-equilibrium”) and those that are not (“off-equilibrium”).

We define a grid point as “on-equilibrium” if there are more than 20 periods during the long simulation, in which the root-mean-square distance between the state variables in that period and the grid point is smaller than a fixed bound. We then run a local regression of our variables of interest (consumption, investment, and the spot wage) on the state variables near the grid point. The predicted value of our variable of interest computed at the grid point is then our updated belief at this grid point.

For the remaining “off-equilibrium” grid points, we use root-mean-square distance to find the closest period during the long simulation. We then shift the distribution of capital and past labor from that period to match the level of the “off-equilibrium” grid points. For example, suppose the grid point has capital and past wage (k_a, \bar{w}_a). Suppose the nearest simulated period has distributions of capital and past wages with average values (k_b, \bar{w}_b).

48
Then each firm’s capital and average wage are shifted by $k_b - k_a$ and $w_b - w_a$. We then take the shifted distribution as an initial distribution and simulate it forward for one period. The result (consumption, investment, spot wage) of this one period simulation is then assigned as the updated belief to this “off-equilibrium” grid point.

There is one additional caveat. It is important to put a weight on old beliefs during updating; without it the procedure may not converge. We have found that the lower the capital adjustment cost, the higher the required weight. For zero adjustment cost, the weight may sometimes need to be as high as 0.998. For our baseline model, the weight we use is 0.85, and likely an even lower weight would have sufficed.

The procedure above describes how to form updated beliefs for investment, spot wages, and consumption as a function of the state. These updated beliefs are $\iota^{n+1} = \iota^n(\Theta_t)$, $w_t = \omega^{n+1}(\Theta_t)$, and $c_t = \zeta^{n+1}(\Theta_t)$. It still remains to update the belief for the stochastic discount factor. Note that with CRRA utility, this would be straightforward: $M^{n+1}(\Theta_t, j_{t+1}) = \beta \left(\frac{Z_{t+1}}{Z_t} \right)^{-\rho \theta} \left(\frac{\zeta^{n+1}(\Theta_{t+1})}{\zeta^{n+1}(\Theta_t)} \right)^{\frac{1}{\psi}}$. For the more general case, we instead set

$$M^{n+1}(\Theta_t, j_{t+1}) = \beta \left(\frac{Z_{t+1}}{Z_t} \right)^{-\rho \theta} \left(\frac{\zeta^{n+1}(\Theta_{t+1})}{\zeta^{n+1}(\Theta_t)} \right)^{\frac{1}{\psi}} \frac{u(\Theta_{t+1})}{E_t \left(\frac{Z_{t+1}}{Z_t} \right)^{\rho(1-\theta)} u(\Theta_{t+1})^{1-\theta} \frac{1}{1-\theta}}.$$

where $u(\Theta_t)$ comes from separately solving the recursion:

$$u(\Theta_t) = \left(1 - \beta \right) \zeta^{n+1}(\Theta_t)^{1-\frac{1}{\psi}} + \beta E_t \left(\frac{Z_{t+1}}{Z_t} \right)^{\rho(1-\theta)} u(\Theta_{t+1})^{1-\theta} \frac{1}{1-\theta}.$$

This recursion is also solved with value function iteration using the same aggregate grids as the firm’s problem. However, it typically takes less than a second because the state space is much smaller (there are no individual firm variables), and because there are no choice variables.

Finally, we must update the bond pricing functions. We use the newly updated stochastic discount factor to compute the recursion in equation 20 by value function iteration. This recursion has both aggregate and individual state variables, however it has no choice variables. As inputs, it uses the value and default functions from the solution to the firm’s problem.

Once steps one and two are complete, we check whether the algorithm has converged. If it has not, we restart step one with updated beliefs. Convergence means that the absolute distance between $\iota^{n+1}(\Theta_t)$ and $\iota^n(\Theta_t)$ is sufficiently small (same for $\zeta^{n+1}(\Theta_t)$ and $\omega^{n+1}(\Theta_t)$).

39 This is because even if rational equilibria exist, they are only weakly stable in the sense described by Marcet and Sargent (1989).
In addition to confirming that the beliefs have converged, it is standard to perform other checks. This solution method is referred to as an approximate bounded rational equilibrium. It is rational because the beliefs of the firms and agents are exactly equal to the best forecast an econometrician could achieve with in simulated data using the state defined variables. However, it is bounded because the forecast may still not be very good, as evidenced by a low R^2.

The lowest R^2 in our forecasting equations is 0.998 for consumption, the others are both above 0.999.

There is one final component of the algorithm worth discussing. Typically, within each outer iteration, the value function iteration in step one would be implemented until convergence of the value function, before moving on to step two. To speed up the algorithm, this is not what we do. During step one of outer iteration n, we iterate the value function for 5 iterations before moving on to step two. Of course, 5 iterations is not enough for the value function to fully converge. However, during step $n + 1$, we initialize the value function to be the final value function from the n iteration, $v^n(\Theta_i, \Theta_t)$. Thus, rather than waiting for the value function to fully converge, before updating beliefs, we update the value function a little bit at a time, then update beliefs, then update the value function a little bit more, and so on. Thus, over n outer iterations, the value function is iterated $5n$ times. Once the beliefs, which are inputs into step one, have converged, this algorithm produces exactly the same result as if we waited for the value function to converge during each outer iteration. However, this process works much faster.

A.3 Variable Construction

Our firm-level control variables are constructed as follows:

- **WCTA**: Working capital is the ratio of Compustat item WCAP to total assets (Compustat item AT).
- **RETA**: Retained earnings is the ratio of Compustat item RE to total assets.
- **EBITTA**: EBIT is the ratio of Compustat item EBIT to total assets.
- **Leverage**: We define book leverage as $(DLTT + DLC)/AT$, where $DLTT$ and DLC are Compustat items for long-term and short-term debt respectively. We also calculate an alternative measure using $(DLTT + DLC)/(DLTT + DLC + AT + TXDITC - PSTK - LT)$ but find that empirically the correlation between these two measures is high (95% correlation). Therefore we only report the results based on our main definition of book leverage. We define market leverage as $(DLTT + DLC)/(DLTT + DLC + PRCC*CSHO)$, where $PRCC$ is the price per share and $CSHO$ is the shares.

40Because we apply a nonparametric approach, we define the $R^2 = 1 - \frac{\sum(x_t - E[x_t|\Theta])^2}{\sum(x_t - E[x_t])^2}$ where $E[x_t]$ is the unconditional mean and $E[x_t|\Theta]$ is our forecast.
outstanding.

- **STA**: Sales is the ratio of Compustat item SALE to total assets.
- **NITA**: Net income is the ratio of Compustat item NI (for North America) and NICON (for Global) to total assets.
- **CACL**: Current ratio is the ratio of Compustat item ACT (current assets) to LCT (current liabilities).
- **σ**: Stock return volatility is the standard deviation of monthly returns. For US firms, stock returns are retrieved from CRSP. For firms in other countries, we use data from Compustat Global Security Daily to calculate stock return in month t as

$$RET_t = \frac{PRCCD_t/\text{AJEXDI}_t \times TRFD_t - PRCCD_{t-1}/\text{AJEXDI}_{t-1} \times TRFD_{t-1}}{PRCCD_{t-1}/\text{AJEXDI}_{t-1} \times TRFD_{t-1}}$$

where $PRCCD_t$ is the closing price at month end, AJEXDI_t and $TRFD_t$ are the corresponding share and return adjustment factors.

- **Invest**: Investment ratio is defined as the ratio of Compustat item CAPX to lagged PPENT (Property, Plant and Equipment).
- **MCAP**: The market capitalization of a firm at year t is defined as the logarithm of the product of year end closing price (PRCCD) and shares outstanding (CSHOC).
- **RSIZE**: Relative size is defined as the logarithm of the ratio of company’s market capitalization to the total market capitalization in its country at the year end. In other words, it is a company’s weight in its country’s value-weighted market portfolio.

- **R_m**: The return on the value-weighted market portfolio for each country at annual frequency.
- **R_{excess}**: The excess return of a firm’s stock is defined as the difference between firm’s raw return (RET) and the value-weighted market portfolio return (R_m).
- **HN**: Net hiring is defined as $HN_t = \frac{(EMP_t - EMP_{t-1})}{0.5 \times (EMP_t + EMP_{t-1})}$, where EMP is the number of employees from Compustat.
- **ΔWAGE**: Wage growth is defined as $\Delta WAGE_t = \frac{(WAGE_t - WAGE_{t-1})}{0.5 \times (WAGE_t + WAGE_{t-1})}$, where $WAGE = XLR/EMP$.

51
Table A1: EDF and ΔXLR

This table presents cross-sectional regressions of EDF on labor expense growth (ΔXLR). These regressions are the same as those presented in the main text, but here, we also report coefficients associated with all of the controls (columns 1-4). Additionally, we redo all of the regressions, but replace book leverage by market leverage (columns 5-8).

<table>
<thead>
<tr>
<th>Data</th>
<th>Book Leverage</th>
<th>Market Leverage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All All High μ Low μ</td>
<td>All All High μ Low μ</td>
</tr>
<tr>
<td>ΔXLR</td>
<td>-0.45 -0.08 -1.50 -0.42</td>
<td>-0.344 -0.188 -1.234 -0.319</td>
</tr>
<tr>
<td></td>
<td>(-7.20) (-1.35) (-9.24) (-7.18)</td>
<td>(-5.22) (-2.67) (-5.50) (-5.60)</td>
</tr>
<tr>
<td>ΔXLR × μ</td>
<td>-0.21</td>
<td>-0.091</td>
</tr>
<tr>
<td></td>
<td>(-4.94)</td>
<td>(-2.21)</td>
</tr>
<tr>
<td>μ</td>
<td>-0.05</td>
<td>-0.037</td>
</tr>
<tr>
<td></td>
<td>(-4.54)</td>
<td>(-9.32)</td>
</tr>
<tr>
<td>LLEV</td>
<td>4.75 4.66 3.41 5.07</td>
<td>5.719 5.692 4.337 6.123</td>
</tr>
<tr>
<td></td>
<td>(4.05) (3.98) (2.83) (4.43)</td>
<td>(5.03) (5.03) (3.98) (5.32)</td>
</tr>
<tr>
<td>σ</td>
<td>1.48 1.45 1.39 1.47</td>
<td>1.767 1.723 1.569 1.767</td>
</tr>
<tr>
<td></td>
<td>(6.78) (6.74) (4.99) (7.00)</td>
<td>(7.70) (7.56) (5.96) (7.88)</td>
</tr>
<tr>
<td>WCTA</td>
<td>-2.58 -2.68 -1.32 -2.81</td>
<td>-1.830 -1.862 -0.962 -1.983</td>
</tr>
<tr>
<td></td>
<td>(-7.18) (-7.02) (-2.49) (-8.55)</td>
<td>(-5.22) (-5.33) (-1.97) (-6.37)</td>
</tr>
<tr>
<td>RETA</td>
<td>-0.14 -0.16 -0.65 -0.15</td>
<td>-0.121 -0.124 -0.511 -0.979</td>
</tr>
<tr>
<td></td>
<td>(-0.71) (-0.84) (-1.92) (-0.74)</td>
<td>(-0.91) (-0.98) (-2.63) (-0.97)</td>
</tr>
<tr>
<td></td>
<td>(-3.52) (-3.19) (-4.09) (-3.41)</td>
<td>(-2.74) (-2.53) (-2.32) (-2.71)</td>
</tr>
<tr>
<td>SaleGr</td>
<td>-0.64 -0.63 -0.35 -0.65</td>
<td>-0.567 -0.592 -0.308 -0.575</td>
</tr>
<tr>
<td></td>
<td>(-0.71) (-0.84) (-1.92) (-0.74)</td>
<td>(-0.91) (-0.98) (-2.63) (-0.97)</td>
</tr>
<tr>
<td>NITA</td>
<td>-0.51 -0.57 -2.19 -0.23</td>
<td>-0.515 -0.560 -2.458 -0.211</td>
</tr>
<tr>
<td></td>
<td>(-1.30) (-1.65) (-5.90) (-0.48)</td>
<td>(-1.48) (-1.70) (-5.88) (-0.48)</td>
</tr>
<tr>
<td>CACL</td>
<td>0.01 0.01 -0.06 0.02</td>
<td>0.032 0.033 -0.014 0.038</td>
</tr>
<tr>
<td></td>
<td>(0.42) (0.45) (-11.11) (0.69)</td>
<td>(4.46) (4.05) (-0.59) (3.10)</td>
</tr>
<tr>
<td>Invest</td>
<td>0.02 0.02 0.01 0.02</td>
<td>0.016 0.017 0.018 0.018</td>
</tr>
<tr>
<td></td>
<td>(5.66) (6.10) (1.54) (4.01)</td>
<td>(5.85) (5.50) (1.87) (3.57)</td>
</tr>
<tr>
<td>R_{excess}</td>
<td>-0.36 -0.32 -0.37 -0.31</td>
<td>-0.804 -0.778 -0.661 -0.775</td>
</tr>
<tr>
<td></td>
<td>(-0.66) (-0.57) (-0.36) (-0.75)</td>
<td>(-1.54) (-1.47) (-0.66) (-1.91)</td>
</tr>
<tr>
<td>RSIZE</td>
<td>0.50 0.49 0.26 0.57</td>
<td>0.521 0.513 0.242 0.589</td>
</tr>
<tr>
<td></td>
<td>(0.94) (0.90) (0.57) (0.99)</td>
<td>(0.97) (0.96) (0.54) (1.02)</td>
</tr>
<tr>
<td></td>
<td>(3.40) (3.48) (3.54) (3.41)</td>
<td>(3.46) (3.50) (3.84) (3.41)</td>
</tr>
<tr>
<td>MCAP</td>
<td>-1.00 -0.99 -0.61 -1.10</td>
<td>-0.927 -0.921 -0.508 -1.034</td>
</tr>
<tr>
<td></td>
<td>(-1.62) (-1.59) (-1.14) (-1.68)</td>
<td>(-1.56) (-1.55) (-1.04) (-1.62)</td>
</tr>
<tr>
<td>Observations</td>
<td>74786 74655 19057 55729</td>
<td>72041 71915 18294 53747</td>
</tr>
<tr>
<td>Avg. R^2</td>
<td>0.290 0.296 0.319 0.301</td>
<td>0.363 0.367 0.376 0.377</td>
</tr>
<tr>
<td>Country fixed effects</td>
<td>Yes Yes Yes Yes</td>
<td>Yes Yes Yes Yes</td>
</tr>
</tbody>
</table>
Table A2: EDF and LS
This table presents cross-sectional regressions of EDF on labor share (LS). These regressions are the same as those presented in the main text, but here, we also report coefficients associated with all of the controls (columns 1-4). Additionally, we redo all of the regressions, but replace book leverage by market leverage (columns 5-8).

<table>
<thead>
<tr>
<th>Data</th>
<th>Book Leverage</th>
<th>Market Leverage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>All High μ</td>
</tr>
<tr>
<td>LS</td>
<td>0.61</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>(4.55)</td>
<td>(3.35)</td>
</tr>
<tr>
<td>LS×μ</td>
<td>0.06</td>
<td>0.026</td>
</tr>
<tr>
<td></td>
<td>(7.41)</td>
<td>(2.17)</td>
</tr>
<tr>
<td>μ</td>
<td>-0.10</td>
<td>-0.059</td>
</tr>
<tr>
<td></td>
<td>(-11.68)</td>
<td>(-5.28)</td>
</tr>
<tr>
<td>LEV</td>
<td>4.62</td>
<td>4.53</td>
</tr>
<tr>
<td></td>
<td>(3.99)</td>
<td>(3.92)</td>
</tr>
<tr>
<td>σ</td>
<td>1.47</td>
<td>1.42</td>
</tr>
<tr>
<td></td>
<td>(6.75)</td>
<td>(6.40)</td>
</tr>
<tr>
<td>WCTA</td>
<td>-2.54</td>
<td>-2.64</td>
</tr>
<tr>
<td></td>
<td>(-7.76)</td>
<td>(-7.49)</td>
</tr>
<tr>
<td>RETA</td>
<td>-0.19</td>
<td>-0.19</td>
</tr>
<tr>
<td></td>
<td>(-0.83)</td>
<td>(-0.93)</td>
</tr>
<tr>
<td>EBITTA</td>
<td>-2.84</td>
<td>-2.71</td>
</tr>
<tr>
<td></td>
<td>(-3.32)</td>
<td>(-3.05)</td>
</tr>
<tr>
<td>SaleGr</td>
<td>-0.79</td>
<td>-0.82</td>
</tr>
<tr>
<td></td>
<td>(-9.33)</td>
<td>(-8.94)</td>
</tr>
<tr>
<td>NITA</td>
<td>-0.64</td>
<td>-0.70</td>
</tr>
<tr>
<td></td>
<td>(-1.63)</td>
<td>(-1.96)</td>
</tr>
<tr>
<td>CACL</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>(0.71)</td>
<td>(0.77)</td>
</tr>
<tr>
<td>Invest</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>(6.40)</td>
<td>(5.53)</td>
</tr>
<tr>
<td>Reccess</td>
<td>-0.45</td>
<td>-0.32</td>
</tr>
<tr>
<td></td>
<td>(-0.76)</td>
<td>(-0.57)</td>
</tr>
<tr>
<td>RSIZE</td>
<td>0.51</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td>(1.00)</td>
<td>(0.98)</td>
</tr>
<tr>
<td>R_m</td>
<td>9.25</td>
<td>9.18</td>
</tr>
<tr>
<td></td>
<td>(3.43)</td>
<td>(3.41)</td>
</tr>
<tr>
<td>MCAP</td>
<td>-0.99</td>
<td>-0.99</td>
</tr>
<tr>
<td></td>
<td>(-1.67)</td>
<td>(-1.65)</td>
</tr>
<tr>
<td>Observations</td>
<td>73376</td>
<td>73229</td>
</tr>
<tr>
<td>Avg. R^2</td>
<td>0.296</td>
<td>0.301</td>
</tr>
<tr>
<td>Country fixed effects</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table A3: ∆DEBT and ∆XLR
This table presents cross-sectional regressions of debt growth (∆DEBT) on labor expense growth (∆XLR). These regressions are the same as those presented in the main text, but here, we also report coefficients associated with all of the controls (columns 1-4). Additionally, we redo all of the regressions, but replace book leverage by market leverage (columns 5-8).

<table>
<thead>
<tr>
<th>Data</th>
<th>Book Leverage</th>
<th>Market Leverage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>∆XLR</td>
<td>0.06</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td>(5.70)</td>
<td>(-1.32)</td>
</tr>
<tr>
<td>∆XLR × µ</td>
<td>0.03</td>
<td>0.025</td>
</tr>
<tr>
<td></td>
<td>(10.57)</td>
<td>(8.76)</td>
</tr>
<tr>
<td>µ</td>
<td>-0.01</td>
<td>-0.003</td>
</tr>
<tr>
<td></td>
<td>(-11.29)</td>
<td>(-6.10)</td>
</tr>
<tr>
<td>LEV</td>
<td>-0.49</td>
<td>-0.49</td>
</tr>
<tr>
<td></td>
<td>(-8.63)</td>
<td>(-8.74)</td>
</tr>
<tr>
<td>σ</td>
<td>-0.01</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td>(-4.11)</td>
<td>(-4.20)</td>
</tr>
<tr>
<td>WCTA</td>
<td>-0.04</td>
<td>-0.04</td>
</tr>
<tr>
<td></td>
<td>(-0.91)</td>
<td>(-0.94)</td>
</tr>
<tr>
<td>RETA</td>
<td>-0.02</td>
<td>-0.02</td>
</tr>
<tr>
<td></td>
<td>(-2.22)</td>
<td>(-2.21)</td>
</tr>
<tr>
<td>EBITTA</td>
<td>0.12</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>(2.03)</td>
<td>(2.03)</td>
</tr>
<tr>
<td>SaleGr</td>
<td>0.08</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>(10.55)</td>
<td>(12.63)</td>
</tr>
<tr>
<td>NITA</td>
<td>-0.01</td>
<td>-0.00</td>
</tr>
<tr>
<td></td>
<td>(-0.22)</td>
<td>(-0.12)</td>
</tr>
<tr>
<td>CACL</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>(1.02)</td>
<td>(0.97)</td>
</tr>
<tr>
<td>Invest</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>(1.82)</td>
<td>(1.65)</td>
</tr>
<tr>
<td>REexcess</td>
<td>0.03</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>(1.55)</td>
<td>(1.65)</td>
</tr>
<tr>
<td>RSIZE</td>
<td>-0.00</td>
<td>-0.00</td>
</tr>
<tr>
<td></td>
<td>(-1.19)</td>
<td>(-0.90)</td>
</tr>
<tr>
<td>Rm</td>
<td>-0.23</td>
<td>-0.23</td>
</tr>
<tr>
<td></td>
<td>(-3.91)</td>
<td>(-3.80)</td>
</tr>
<tr>
<td>MCAP</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>(5.50)</td>
<td>(4.51)</td>
</tr>
<tr>
<td>Observations</td>
<td>103314</td>
<td>103107</td>
</tr>
<tr>
<td>Avg. R^2</td>
<td>0.059</td>
<td>0.060</td>
</tr>
<tr>
<td>Country fixed effects</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table A4: ∆DEBT and LS
This table presents cross-sectional regressions of debt growth (ΔDEBT) on labor share (LS). These regressions are the same as those presented in the main text, but here, we also report coefficients associated with all of the controls (columns 1-4). Additionally, we redo all of the regressions, but replace book leverage by market leverage (columns 5-8).

<table>
<thead>
<tr>
<th>Data</th>
<th>All</th>
<th>All</th>
<th>High μ</th>
<th>Low μ</th>
<th>All</th>
<th>All</th>
<th>High μ</th>
<th>Low μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-0.04</td>
<td>-0.02</td>
<td>-0.016</td>
<td>-0.017</td>
<td>-0.032</td>
<td>-0.015</td>
</tr>
<tr>
<td></td>
<td>(-4.23)</td>
<td>(-2.21)</td>
<td>(-4.19)</td>
<td>(-3.41)</td>
<td>(-2.70)</td>
<td>(-1.65)</td>
<td>(-2.86)</td>
<td>(-2.22)</td>
</tr>
<tr>
<td>LS×μ</td>
<td></td>
<td></td>
<td>-0.002</td>
<td></td>
<td></td>
<td></td>
<td>-0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(-2.61)</td>
<td></td>
<td></td>
<td></td>
<td>(-0.60)</td>
<td></td>
</tr>
<tr>
<td>μ</td>
<td></td>
<td></td>
<td>-0.00</td>
<td></td>
<td></td>
<td></td>
<td>-0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(-1.78)</td>
<td></td>
<td></td>
<td></td>
<td>(-0.98)</td>
<td></td>
</tr>
<tr>
<td>LEV</td>
<td>-0.49</td>
<td>-0.49</td>
<td>-0.36</td>
<td>-0.54</td>
<td>-0.408</td>
<td>-0.405</td>
<td>-0.285</td>
<td>-0.456</td>
</tr>
<tr>
<td></td>
<td>(-8.81)</td>
<td>(-8.80)</td>
<td>(-9.66)</td>
<td>(-8.61)</td>
<td>(-10.33)</td>
<td>(-10.38)</td>
<td>(-7.18)</td>
<td>(-10.47)</td>
</tr>
<tr>
<td>σ</td>
<td>-0.01</td>
<td>-0.01</td>
<td>-0.01</td>
<td>-0.01</td>
<td>-0.005</td>
<td>-0.005</td>
<td>-0.011</td>
<td>-0.004</td>
</tr>
<tr>
<td></td>
<td>(-4.26)</td>
<td>(-4.05)</td>
<td>(-5.38)</td>
<td>(-3.65)</td>
<td>(-1.43)</td>
<td>(-1.44)</td>
<td>(-2.08)</td>
<td>(-1.02)</td>
</tr>
<tr>
<td>WCTA</td>
<td>-0.04</td>
<td>-0.04</td>
<td>-0.08</td>
<td>-0.03</td>
<td>-0.039</td>
<td>-0.042</td>
<td>-0.076</td>
<td>-0.042</td>
</tr>
<tr>
<td></td>
<td>(-0.94)</td>
<td>(-0.91)</td>
<td>(-1.89)</td>
<td>(-0.74)</td>
<td>(-1.57)</td>
<td>(-1.56)</td>
<td>(-2.42)</td>
<td>(-1.40)</td>
</tr>
<tr>
<td>RETA</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-0.03</td>
<td>-0.02</td>
<td>0.000</td>
<td>0.000</td>
<td>0.009</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>(-2.25)</td>
<td>(-2.17)</td>
<td>(-1.75)</td>
<td>(-2.47)</td>
<td>(0.09)</td>
<td>(0.01)</td>
<td>(-1.29)</td>
<td>(0.42)</td>
</tr>
<tr>
<td>EBITTA</td>
<td>0.12</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.020</td>
<td>0.031</td>
<td>0.055</td>
<td>0.017</td>
</tr>
<tr>
<td></td>
<td>(2.17)</td>
<td>(2.23)</td>
<td>(1.32)</td>
<td>(2.31)</td>
<td>(0.56)</td>
<td>(0.79)</td>
<td>(0.86)</td>
<td>(0.46)</td>
</tr>
<tr>
<td>SaleGr</td>
<td>0.11</td>
<td>0.11</td>
<td>0.15</td>
<td>0.10</td>
<td>0.094</td>
<td>0.093</td>
<td>0.147</td>
<td>0.085</td>
</tr>
<tr>
<td></td>
<td>(8.16)</td>
<td>(8.71)</td>
<td>(7.01)</td>
<td>(8.82)</td>
<td>(7.68)</td>
<td>(8.15)</td>
<td>(4.54)</td>
<td>(9.70)</td>
</tr>
<tr>
<td>NITA</td>
<td>-0.01</td>
<td>-0.01</td>
<td>0.04</td>
<td>-0.02</td>
<td>0.018</td>
<td>0.016</td>
<td>0.082</td>
<td>0.027</td>
</tr>
<tr>
<td></td>
<td>(-0.57)</td>
<td>(-0.49)</td>
<td>(0.97)</td>
<td>(-0.85)</td>
<td>(1.09)</td>
<td>(0.97)</td>
<td>(1.38)</td>
<td>(2.57)</td>
</tr>
<tr>
<td>CACL</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.00</td>
<td>0.00</td>
<td>0.002</td>
<td>0.002</td>
<td>-0.003</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>(0.86)</td>
<td>(0.83)</td>
<td>(-0.28)</td>
<td>(0.90)</td>
<td>(1.20)</td>
<td>(1.31)</td>
<td>(-0.60)</td>
<td>(1.66)</td>
</tr>
<tr>
<td>Invest</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.00</td>
<td>0.00</td>
<td>0.002</td>
<td>0.002</td>
<td>0.000</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>(1.69)</td>
<td>(1.61)</td>
<td>(-0.75)</td>
<td>(2.88)</td>
<td>(1.06)</td>
<td>(0.94)</td>
<td>(0.15)</td>
<td>(2.10)</td>
</tr>
<tr>
<td>R_{excess}</td>
<td>0.03</td>
<td>0.04</td>
<td>0.01</td>
<td>0.05</td>
<td>0.067</td>
<td>0.067</td>
<td>0.026</td>
<td>0.081</td>
</tr>
<tr>
<td></td>
<td>(1.51)</td>
<td>(1.56)</td>
<td>(0.32)</td>
<td>(1.33)</td>
<td>(2.40)</td>
<td>(2.42)</td>
<td>(0.69)</td>
<td>(1.85)</td>
</tr>
<tr>
<td>RSIZE</td>
<td>-0.00</td>
<td>-0.00</td>
<td>0.00</td>
<td>-0.01</td>
<td>-0.010</td>
<td>-0.010</td>
<td>-0.002</td>
<td>-0.014</td>
</tr>
<tr>
<td></td>
<td>(-0.65)</td>
<td>(-0.62)</td>
<td>(0.54)</td>
<td>(-1.10)</td>
<td>(-1.54)</td>
<td>(-1.51)</td>
<td>(-0.31)</td>
<td>(-1.38)</td>
</tr>
<tr>
<td>R_m</td>
<td>-0.22</td>
<td>-0.22</td>
<td>-0.25</td>
<td>-0.20</td>
<td>-0.148</td>
<td>-0.147</td>
<td>-0.158</td>
<td>-0.136</td>
</tr>
<tr>
<td></td>
<td>(-3.76)</td>
<td>(-3.69)</td>
<td>(-5.59)</td>
<td>(-2.83)</td>
<td>(-2.43)</td>
<td>(-2.40)</td>
<td>(-2.64)</td>
<td>(-1.85)</td>
</tr>
<tr>
<td>MCAP</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.014</td>
<td>0.014</td>
<td>0.007</td>
<td>0.017</td>
</tr>
<tr>
<td></td>
<td>(5.04)</td>
<td>(4.54)</td>
<td>(0.59)</td>
<td>(3.95)</td>
<td>(2.62)</td>
<td>(2.53)</td>
<td>(1.16)</td>
<td>(2.13)</td>
</tr>
<tr>
<td>Observations</td>
<td>101517</td>
<td>101185</td>
<td>25836</td>
<td>75681</td>
<td>79131</td>
<td>78938</td>
<td>19897</td>
<td>59234</td>
</tr>
<tr>
<td>Avg. (R^2)</td>
<td>0.058</td>
<td>0.058</td>
<td>0.076</td>
<td>0.066</td>
<td>0.064</td>
<td>0.064</td>
<td>0.089</td>
<td>0.074</td>
</tr>
<tr>
<td>Country fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table A5: ∆DEBT, EDF and ∆XLR
This table presents cross-sectional regressions of EDF and debt growth (∆DEBT) on labor expense growth (∆XLR). These regressions are similar to those presented in the main text, but here, we add net hiring (HN).

<table>
<thead>
<tr>
<th>Data</th>
<th>EDF</th>
<th>∆DEBT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All All</td>
<td>High μ</td>
</tr>
<tr>
<td>∆XLR</td>
<td>-0.193</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td>(2.40)</td>
<td>(0.15)</td>
</tr>
<tr>
<td>μ x ∆XLR</td>
<td>-0.120</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.59)</td>
<td></td>
</tr>
<tr>
<td>μ</td>
<td>-0.019</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-4.89)</td>
<td></td>
</tr>
<tr>
<td>HN</td>
<td>-0.801</td>
<td>-0.758</td>
</tr>
<tr>
<td></td>
<td>(-8.03)</td>
<td>(-7.44)</td>
</tr>
<tr>
<td>BLEV</td>
<td>4.271</td>
<td>4.260</td>
</tr>
<tr>
<td></td>
<td>(3.98)</td>
<td>(4.01)</td>
</tr>
<tr>
<td>σ</td>
<td>1.789</td>
<td>1.773</td>
</tr>
<tr>
<td></td>
<td>(4.70)</td>
<td>(4.67)</td>
</tr>
<tr>
<td>WCTA</td>
<td>-2.435</td>
<td>-2.421</td>
</tr>
<tr>
<td></td>
<td>(-6.17)</td>
<td>(-6.13)</td>
</tr>
<tr>
<td>RETA</td>
<td>-0.184</td>
<td>-0.176</td>
</tr>
<tr>
<td></td>
<td>(-8.4)</td>
<td>(-7.43)</td>
</tr>
<tr>
<td>EBITTA</td>
<td>-2.894</td>
<td>-2.901</td>
</tr>
<tr>
<td></td>
<td>(-3.0)</td>
<td>(-2.83)</td>
</tr>
<tr>
<td>SaleGr</td>
<td>-0.562</td>
<td>-0.559</td>
</tr>
<tr>
<td></td>
<td>(-5.66)</td>
<td>(-5.08)</td>
</tr>
<tr>
<td>NITA</td>
<td>-0.439</td>
<td>-0.520</td>
</tr>
<tr>
<td></td>
<td>(-0.84)</td>
<td>(-1.07)</td>
</tr>
<tr>
<td>CACL</td>
<td>0.011</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td>(0.52)</td>
<td>(0.49)</td>
</tr>
<tr>
<td>Invest</td>
<td>0.031</td>
<td>0.031</td>
</tr>
<tr>
<td></td>
<td>(2.75)</td>
<td>(2.76)</td>
</tr>
<tr>
<td>Reexcess</td>
<td>-1.090</td>
<td>-1.059</td>
</tr>
<tr>
<td></td>
<td>(-2.97)</td>
<td>(-2.88)</td>
</tr>
<tr>
<td>RSIZE</td>
<td>0.497</td>
<td>0.503</td>
</tr>
<tr>
<td></td>
<td>(1.20)</td>
<td>(1.20)</td>
</tr>
<tr>
<td>Rm</td>
<td>8.435</td>
<td>8.324</td>
</tr>
<tr>
<td></td>
<td>(3.71)</td>
<td>(3.73)</td>
</tr>
<tr>
<td>MCP</td>
<td>-0.966</td>
<td>-0.973</td>
</tr>
<tr>
<td></td>
<td>(-1.95)</td>
<td>(-1.95)</td>
</tr>
</tbody>
</table>

Observations	48548	48382	12983	35475	57412	57298	15155	42257
Avg. R²	0.294	0.297	0.332	0.310	0.069	0.069	0.099	0.078
Country fixed effects	Yes							

56
Table A6: ΔDEBT, EDF and ΔXLR, alternative rigidity measure

This table presents cross-sectional regressions of EDF and debt growth (ΔDEBT) on labor share (LS). These regressions use an alternative measure of rigidity: $\mu = AC(\Delta XLR)$, where AC represents the first order autocorrelation.

<table>
<thead>
<tr>
<th>Data</th>
<th>EDF</th>
<th></th>
<th></th>
<th>ΔDEBT</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>High μ</td>
<td>Low μ</td>
<td>All</td>
<td>High μ</td>
<td>Low μ</td>
</tr>
<tr>
<td>ΔXLR</td>
<td>-0.330</td>
<td>-0.514</td>
<td>-0.177</td>
<td>0.041</td>
<td>0.117</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>(-4.24)</td>
<td>(-2.89)</td>
<td>(-2.72)</td>
<td>(4.31)</td>
<td>(2.63)</td>
<td>(0.73)</td>
</tr>
<tr>
<td>$\mu \times \Delta$XLR</td>
<td>-0.969</td>
<td></td>
<td></td>
<td>0.165</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-6.55)</td>
<td></td>
<td></td>
<td>(4.35)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ</td>
<td>0.710</td>
<td></td>
<td></td>
<td>-0.010</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5.11)</td>
<td></td>
<td></td>
<td>(-1.36)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HN</td>
<td>-0.694</td>
<td>-0.910</td>
<td>-0.704</td>
<td>0.145</td>
<td>0.128</td>
<td>0.154</td>
</tr>
<tr>
<td></td>
<td>(-5.76)</td>
<td>(-8.01)</td>
<td>(-4.80)</td>
<td>(9.48)</td>
<td>(3.77)</td>
<td>(11.54)</td>
</tr>
<tr>
<td>BLEV</td>
<td>4.183</td>
<td>5.443</td>
<td>3.689</td>
<td>-0.526</td>
<td>-0.543</td>
<td>-0.521</td>
</tr>
<tr>
<td></td>
<td>(4.03)</td>
<td>(4.60)</td>
<td>(3.69)</td>
<td>(-8.21)</td>
<td>(-7.12)</td>
<td>(-8.40)</td>
</tr>
<tr>
<td>σ</td>
<td>1.755</td>
<td>1.925</td>
<td>1.755</td>
<td>-0.015</td>
<td>-0.008</td>
<td>-0.017</td>
</tr>
<tr>
<td></td>
<td>(4.55)</td>
<td>(3.87)</td>
<td>(4.45)</td>
<td>(-3.96)</td>
<td>(-0.92)</td>
<td>(-5.32)</td>
</tr>
<tr>
<td>WCTA</td>
<td>-2.415</td>
<td>-2.682</td>
<td>-2.392</td>
<td>-0.084</td>
<td>-0.141</td>
<td>-0.067</td>
</tr>
<tr>
<td></td>
<td>(-5.84)</td>
<td>(-15.29)</td>
<td>(-4.84)</td>
<td>(-2.54)</td>
<td>(-4.20)</td>
<td>(-1.85)</td>
</tr>
<tr>
<td>RETA</td>
<td>-0.195</td>
<td>-0.776</td>
<td>-0.048</td>
<td>-0.021</td>
<td>-0.018</td>
<td>-0.027</td>
</tr>
<tr>
<td></td>
<td>(-0.86)</td>
<td>(-1.24)</td>
<td>(-0.41)</td>
<td>(-2.16)</td>
<td>(-2.93)</td>
<td>(-2.01)</td>
</tr>
<tr>
<td>EBITTA</td>
<td>-2.929</td>
<td>-4.314</td>
<td>-2.649</td>
<td>0.132</td>
<td>0.096</td>
<td>0.158</td>
</tr>
<tr>
<td></td>
<td>(-3.03)</td>
<td>(-4.45)</td>
<td>(-2.74)</td>
<td>(1.43)</td>
<td>(1.79)</td>
<td>(1.37)</td>
</tr>
<tr>
<td>SaleGr</td>
<td>-0.574</td>
<td>-0.639</td>
<td>-0.525</td>
<td>0.035</td>
<td>0.068</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td>(-5.35)</td>
<td>(-1.96)</td>
<td>(-4.96)</td>
<td>(2.50)</td>
<td>(2.75)</td>
<td>(1.76)</td>
</tr>
<tr>
<td>NITA</td>
<td>-0.561</td>
<td>-0.792</td>
<td>-0.666</td>
<td>-0.015</td>
<td>0.072</td>
<td>-0.031</td>
</tr>
<tr>
<td></td>
<td>(-1.28)</td>
<td>(-1.26)</td>
<td>(-1.73)</td>
<td>(-0.51)</td>
<td>(3.45)</td>
<td>(-0.85)</td>
</tr>
<tr>
<td>CACL</td>
<td>0.011</td>
<td>-0.015</td>
<td>0.023</td>
<td>0.004</td>
<td>0.012</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>(0.55)</td>
<td>(-0.86)</td>
<td>(0.93)</td>
<td>(1.70)</td>
<td>(6.30)</td>
<td>(0.76)</td>
</tr>
<tr>
<td>Invest</td>
<td>0.029</td>
<td>0.027</td>
<td>0.029</td>
<td>0.007</td>
<td>0.009</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>(2.27)</td>
<td>(1.94)</td>
<td>(2.58)</td>
<td>(1.46)</td>
<td>(1.92)</td>
<td>(1.32)</td>
</tr>
<tr>
<td>R_{excess}</td>
<td>-1.063</td>
<td>-1.527</td>
<td>-0.955</td>
<td>0.040</td>
<td>0.039</td>
<td>0.025</td>
</tr>
<tr>
<td></td>
<td>(-2.94)</td>
<td>(-3.44)</td>
<td>(-2.26)</td>
<td>(1.95)</td>
<td>(1.53)</td>
<td>(1.00)</td>
</tr>
<tr>
<td>RSIZE</td>
<td>0.493</td>
<td>0.301</td>
<td>0.474</td>
<td>-0.001</td>
<td>-0.008</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>(1.21)</td>
<td>(0.73)</td>
<td>(1.26)</td>
<td>(-0.19)</td>
<td>(-1.06)</td>
<td>(0.32)</td>
</tr>
<tr>
<td>R_m</td>
<td>8.305</td>
<td>10.439</td>
<td>7.500</td>
<td>-0.214</td>
<td>-0.206</td>
<td>-0.208</td>
</tr>
<tr>
<td></td>
<td>(3.78)</td>
<td>(3.66)</td>
<td>(3.74)</td>
<td>(-4.07)</td>
<td>(-2.36)</td>
<td>(-4.14)</td>
</tr>
<tr>
<td>MCAP</td>
<td>-0.954</td>
<td>-0.851</td>
<td>-0.905</td>
<td>0.012</td>
<td>0.018</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td>(-1.96)</td>
<td>(-1.83)</td>
<td>(-1.97)</td>
<td>(1.93)</td>
<td>(2.24)</td>
<td>(1.15)</td>
</tr>
<tr>
<td>Observations</td>
<td>47827</td>
<td>11515</td>
<td>36312</td>
<td>56674</td>
<td>13551</td>
<td>43123</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.296</td>
<td>0.402</td>
<td>0.285</td>
<td>0.070</td>
<td>0.126</td>
<td>0.071</td>
</tr>
<tr>
<td>Country fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table A7: ΔDEBT, EDF and LS

This table presents cross-sectional regressions of EDF and debt growth (ΔDEBT) on labor share (LS). These regressions are similar to those presented in the main text, but here, we add net hiring (HN).

<table>
<thead>
<tr>
<th></th>
<th>EDF</th>
<th>ΔDEBT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All All High μ</td>
<td>Low μ</td>
</tr>
<tr>
<td>LS</td>
<td>0.562 0.439</td>
<td>1.123 0.502</td>
</tr>
<tr>
<td></td>
<td>(3.34 2.10)</td>
<td>(5.98 2.78)</td>
</tr>
<tr>
<td>μ×LS</td>
<td>0.058</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-3.68)</td>
<td></td>
</tr>
<tr>
<td>μ</td>
<td>-0.068</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-5.23)</td>
<td></td>
</tr>
<tr>
<td>HN</td>
<td>-0.818 -0.828</td>
<td>-0.712 -0.840</td>
</tr>
<tr>
<td>BLEV</td>
<td>4.178 4.172</td>
<td>2.712 4.502</td>
</tr>
<tr>
<td></td>
<td>(3.89 3.94)</td>
<td>(3.31 4.02)</td>
</tr>
<tr>
<td>σ</td>
<td>1.766 1.738</td>
<td>1.815 1.767</td>
</tr>
<tr>
<td></td>
<td>(4.53 4.52)</td>
<td>(3.20 4.51)</td>
</tr>
<tr>
<td>WCTA</td>
<td>-2.378 -2.373</td>
<td>-0.939 -2.686</td>
</tr>
<tr>
<td></td>
<td>(-6.51 -6.50)</td>
<td>(-2.44 -7.47)</td>
</tr>
<tr>
<td>RETA</td>
<td>-0.187 -0.182</td>
<td>-0.958 -0.209</td>
</tr>
<tr>
<td></td>
<td>(-0.78 -0.78)</td>
<td>(-3.68 -0.81)</td>
</tr>
<tr>
<td>EBITTA</td>
<td>-2.904 -2.891</td>
<td>-3.271 -2.784</td>
</tr>
<tr>
<td></td>
<td>(-2.76 -2.61)</td>
<td>(-2.46 -2.73)</td>
</tr>
<tr>
<td>SaleGr</td>
<td>-0.591 -0.594</td>
<td>-0.403 -0.617</td>
</tr>
<tr>
<td></td>
<td>(-6.58 -6.31)</td>
<td>(-5.09 -5.77)</td>
</tr>
<tr>
<td>NITA</td>
<td>-0.622 -0.705</td>
<td>-2.175 -0.342</td>
</tr>
<tr>
<td></td>
<td>(-1.10 -1.35)</td>
<td>(-4.18 -0.54)</td>
</tr>
<tr>
<td>CACL</td>
<td>0.02 0.021</td>
<td>-0.064 0.035</td>
</tr>
<tr>
<td></td>
<td>(0.78 0.75)</td>
<td>(-5.43 1.02)</td>
</tr>
<tr>
<td>Invest</td>
<td>0.032 0.031</td>
<td>0.005 0.039</td>
</tr>
<tr>
<td></td>
<td>(3.38 3.30)</td>
<td>(0.61 4.12)</td>
</tr>
<tr>
<td>Reccess</td>
<td>-1.125 -1.076</td>
<td>-1.337 -1.068</td>
</tr>
<tr>
<td></td>
<td>(-3.10 -3.00)</td>
<td>(-2.28 -2.70)</td>
</tr>
<tr>
<td>RSIZE</td>
<td>0.499 0.511</td>
<td>-0.055 0.57</td>
</tr>
<tr>
<td></td>
<td>(1.28 1.29)</td>
<td>(-0.22 1.51)</td>
</tr>
<tr>
<td>Rm</td>
<td>8.255 8.103</td>
<td>5.874 9.107</td>
</tr>
<tr>
<td></td>
<td>(3.57 3.57)</td>
<td>(3.29 3.61)</td>
</tr>
<tr>
<td>MCAP</td>
<td>-0.950 -0.959</td>
<td>-0.227 -1.067</td>
</tr>
<tr>
<td></td>
<td>(-2.02 -2.02)</td>
<td>(-0.76 -2.31)</td>
</tr>
<tr>
<td>Observations</td>
<td>47728 47660</td>
<td>12886 34842</td>
</tr>
<tr>
<td>Avg. R²</td>
<td>0.3 0.305</td>
<td>0.347 0.316</td>
</tr>
<tr>
<td>Country fixed effects</td>
<td>Yes Yes Yes Yes</td>
<td>Yes Yes Yes Yes</td>
</tr>
</tbody>
</table>
Table A8: ΔDEBT, EDF and LS, alternative rigidity measure

This table presents cross-sectional regressions of EDF and debt growth (ΔDEBT) on labor share (LS). These regressions use an alternative measure of rigidity: $\mu = AC(\Delta XLR)$, where AC represents the first order autocorrelation.

<table>
<thead>
<tr>
<th>Data</th>
<th>EDF</th>
<th>ΔDEBT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>High μ</td>
</tr>
<tr>
<td>LS</td>
<td>0.617</td>
<td>0.871</td>
</tr>
<tr>
<td></td>
<td>(2.96)</td>
<td>(2.32)</td>
</tr>
<tr>
<td>$\mu \times LS$</td>
<td>0.346</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>(1.65)</td>
<td>(-0.06)</td>
</tr>
<tr>
<td>μ</td>
<td>0.332</td>
<td>0.013</td>
</tr>
<tr>
<td></td>
<td>(3.61)</td>
<td>(1.74)</td>
</tr>
<tr>
<td>HN</td>
<td>-0.816</td>
<td>-1.230</td>
</tr>
<tr>
<td></td>
<td>(-8.92)</td>
<td>(-10.84)</td>
</tr>
<tr>
<td>BLEV</td>
<td>4.087</td>
<td>5.322</td>
</tr>
<tr>
<td></td>
<td>(3.93)</td>
<td>(4.67)</td>
</tr>
<tr>
<td>σ</td>
<td>1.726</td>
<td>1.830</td>
</tr>
<tr>
<td></td>
<td>(4.32)</td>
<td>(3.61)</td>
</tr>
<tr>
<td>WCTA</td>
<td>-2.377</td>
<td>-2.706</td>
</tr>
<tr>
<td></td>
<td>(-6.41)</td>
<td>(-14.53)</td>
</tr>
<tr>
<td>RETA</td>
<td>-0.213</td>
<td>-0.810</td>
</tr>
<tr>
<td></td>
<td>(-0.84)</td>
<td>(-1.18)</td>
</tr>
<tr>
<td>EBITTA</td>
<td>-2.893</td>
<td>-4.225</td>
</tr>
<tr>
<td></td>
<td>(-2.80)</td>
<td>(-3.95)</td>
</tr>
<tr>
<td>SaleGr</td>
<td>-0.619</td>
<td>-0.653</td>
</tr>
<tr>
<td></td>
<td>(-6.53)</td>
<td>(-2.13)</td>
</tr>
<tr>
<td>NITA</td>
<td>-0.751</td>
<td>-0.738</td>
</tr>
<tr>
<td></td>
<td>(-1.58)</td>
<td>(-0.90)</td>
</tr>
<tr>
<td>CACL</td>
<td>0.022</td>
<td>-0.002</td>
</tr>
<tr>
<td></td>
<td>(0.85)</td>
<td>(-0.08)</td>
</tr>
<tr>
<td>Invest</td>
<td>0.029</td>
<td>0.045</td>
</tr>
<tr>
<td></td>
<td>(2.80)</td>
<td>(3.19)</td>
</tr>
<tr>
<td>R_{excess}</td>
<td>-1.061</td>
<td>-1.439</td>
</tr>
<tr>
<td></td>
<td>(-2.90)</td>
<td>(-3.15)</td>
</tr>
<tr>
<td>RSIZE</td>
<td>0.501</td>
<td>0.228</td>
</tr>
<tr>
<td></td>
<td>(1.28)</td>
<td>(0.70)</td>
</tr>
<tr>
<td>R_m</td>
<td>8.045</td>
<td>9.954</td>
</tr>
<tr>
<td></td>
<td>(3.59)</td>
<td>(3.24)</td>
</tr>
<tr>
<td>MCAP</td>
<td>-0.943</td>
<td>-0.743</td>
</tr>
<tr>
<td></td>
<td>(-2.00)</td>
<td>(-1.93)</td>
</tr>
<tr>
<td>Observations</td>
<td>47119</td>
<td>11276</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.305</td>
<td>0.418</td>
</tr>
<tr>
<td>Country fixed effects</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
This table presents cross-sectional regressions of EDF and debt growth (ΔDEBT) on wage growth (ΔWAGE). These regressions are similar to those presented in the main text, but here, we replace ΔXLR by ΔWAGE and add net hiring (HN).

<table>
<thead>
<tr>
<th>EDF</th>
<th>ΔDEBT</th>
<th>EDF</th>
<th>ΔDEBT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>All</td>
<td>All</td>
<td>High μ</td>
</tr>
<tr>
<td>ΔWAGE</td>
<td>-0.224</td>
<td>-0.093</td>
<td>-1.265</td>
</tr>
<tr>
<td></td>
<td>(-3.89)</td>
<td>(-1.35)</td>
<td>(-5.28)</td>
</tr>
<tr>
<td>μ × ΔWAGE</td>
<td>-0.079</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-2.64)</td>
<td>(3.77)</td>
<td></td>
</tr>
<tr>
<td>μ</td>
<td>-0.032</td>
<td>-0.002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-9.92)</td>
<td>(-3.68)</td>
<td></td>
</tr>
<tr>
<td>HN</td>
<td>-1.025</td>
<td>-1.094</td>
<td>-1.654</td>
</tr>
<tr>
<td></td>
<td>(-10.21)</td>
<td>(-8.65)</td>
<td>(-4.62)</td>
</tr>
<tr>
<td>BLEV</td>
<td>4.265</td>
<td>4.250</td>
<td>2.671</td>
</tr>
<tr>
<td></td>
<td>(3.97)</td>
<td>(4.00)</td>
<td>(3.22)</td>
</tr>
<tr>
<td>σ</td>
<td>1.788</td>
<td>1.768</td>
<td>1.816</td>
</tr>
<tr>
<td></td>
<td>(4.69)</td>
<td>(4.67)</td>
<td>(3.36)</td>
</tr>
<tr>
<td>WCTA</td>
<td>-2.439</td>
<td>-2.423</td>
<td>-0.910</td>
</tr>
<tr>
<td></td>
<td>(-6.16)</td>
<td>(-6.12)</td>
<td>(-2.05)</td>
</tr>
<tr>
<td>RETA</td>
<td>-0.184</td>
<td>-0.176</td>
<td>-0.795</td>
</tr>
<tr>
<td></td>
<td>(-0.84)</td>
<td>(-0.83)</td>
<td>(-3.18)</td>
</tr>
<tr>
<td>EBITTA</td>
<td>-2.881</td>
<td>-2.905</td>
<td>-3.756</td>
</tr>
<tr>
<td></td>
<td>(-2.98)</td>
<td>(-2.87)</td>
<td>(-2.87)</td>
</tr>
<tr>
<td>SaleGr</td>
<td>-0.557</td>
<td>-0.558</td>
<td>-0.298</td>
</tr>
<tr>
<td></td>
<td>(-5.91)</td>
<td>(-5.26)</td>
<td>(-1.67)</td>
</tr>
<tr>
<td>NITA</td>
<td>-0.446</td>
<td>-0.502</td>
<td>-2.079</td>
</tr>
<tr>
<td></td>
<td>(-0.84)</td>
<td>(-1.03)</td>
<td>(-5.10)</td>
</tr>
<tr>
<td>CACL</td>
<td>0.011</td>
<td>0.011</td>
<td>-0.084</td>
</tr>
<tr>
<td></td>
<td>(0.54)</td>
<td>(0.49)</td>
<td>(-5.90)</td>
</tr>
<tr>
<td>Invest</td>
<td>0.032</td>
<td>0.031</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td>(2.81)</td>
<td>(2.78)</td>
<td>(0.94)</td>
</tr>
<tr>
<td>R_{excess}</td>
<td>-1.094</td>
<td>-1.063</td>
<td>-1.284</td>
</tr>
<tr>
<td></td>
<td>(-2.98)</td>
<td>(-2.89)</td>
<td>(-2.05)</td>
</tr>
<tr>
<td>RSIZE</td>
<td>0.496</td>
<td>0.506</td>
<td>-0.059</td>
</tr>
<tr>
<td></td>
<td>(1.20)</td>
<td>(1.19)</td>
<td>(-0.23)</td>
</tr>
<tr>
<td>R_m</td>
<td>8.433</td>
<td>8.353</td>
<td>6.293</td>
</tr>
<tr>
<td></td>
<td>(3.72)</td>
<td>(3.74)</td>
<td>(3.55)</td>
</tr>
<tr>
<td>MCAP</td>
<td>-0.965</td>
<td>-0.976</td>
<td>-0.258</td>
</tr>
<tr>
<td></td>
<td>(-1.95)</td>
<td>(-1.93)</td>
<td>(-0.83)</td>
</tr>
<tr>
<td>Observations</td>
<td>48452</td>
<td>48376</td>
<td>12983</td>
</tr>
<tr>
<td>Avg. R2</td>
<td>0.294</td>
<td>0.297</td>
<td>0.332</td>
</tr>
<tr>
<td>Country fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table A10: Leverage and labor share

This table presents cross-sectional regressions of leverage at $t + 1$ on labor labor share (LS) at t. These regressions are the same as those presented in the main text, but here, we also report coefficients associated with all of the controls.

<table>
<thead>
<tr>
<th></th>
<th>LEVM$_{t+1}$</th>
<th></th>
<th>LEVB$_{t+1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LS$_t$</td>
<td>LEVM$_t$</td>
<td>LEVB$_t$</td>
</tr>
<tr>
<td></td>
<td>-0.041</td>
<td>0.859</td>
<td>0.866</td>
</tr>
<tr>
<td></td>
<td>(-4.72)</td>
<td>(60.94)</td>
<td>(143.11)</td>
</tr>
<tr>
<td></td>
<td>-0.029</td>
<td>0.857</td>
<td>0.859</td>
</tr>
<tr>
<td></td>
<td>(-19.16)</td>
<td>(51.54)</td>
<td>(124.74)</td>
</tr>
<tr>
<td></td>
<td>-0.005</td>
<td>(-5.73)</td>
<td>(-2.55)</td>
</tr>
<tr>
<td></td>
<td>(-7.75)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-7.75)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.031</td>
<td></td>
<td>(-2.38)</td>
</tr>
<tr>
<td></td>
<td>(-5.57)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.028</td>
<td>(-15.23)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-7.75)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.002</td>
<td>(-2.55)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-7.75)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.003</td>
<td>(-2.38)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-7.75)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.031</td>
<td></td>
<td>(-2.38)</td>
</tr>
<tr>
<td></td>
<td>(-5.57)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.028</td>
<td>(-15.23)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-7.75)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.002</td>
<td>(-2.55)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-7.75)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.003</td>
<td>(-2.38)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-7.75)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.025</td>
<td>(-3.66)</td>
<td>(-3.66)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WCTA</td>
<td>0.002</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4.42)</td>
<td>(-0.49)</td>
</tr>
<tr>
<td></td>
<td>RETA</td>
<td>-0.021</td>
<td>-0.008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-3.89)</td>
<td>(-1.67)</td>
</tr>
<tr>
<td></td>
<td>EBITTA</td>
<td>0.009</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4.62)</td>
<td>(6.62)</td>
</tr>
<tr>
<td></td>
<td>SaleGr</td>
<td>0.015</td>
<td>-0.006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3.05)</td>
<td>(-1.47)</td>
</tr>
<tr>
<td></td>
<td>NITA</td>
<td>0.001</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4.57)</td>
<td>(0.37)</td>
</tr>
<tr>
<td></td>
<td>CAACL</td>
<td>0.000</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.06)</td>
<td>(-0.54)</td>
</tr>
<tr>
<td></td>
<td>Invest</td>
<td>0.000</td>
<td>-0.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-0.72)</td>
<td>(-0.41)</td>
</tr>
<tr>
<td></td>
<td>R_{exc}</td>
<td>-0.006</td>
<td>-0.014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-2.17)</td>
<td>(-9.13)</td>
</tr>
<tr>
<td></td>
<td>RSIZE</td>
<td>-0.009</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-4.12)</td>
<td>(-2.56)</td>
</tr>
<tr>
<td></td>
<td>R_m</td>
<td>-0.005</td>
<td>-0.022</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-0.26)</td>
<td>(-5.49)</td>
</tr>
<tr>
<td></td>
<td>MCAP</td>
<td>0.008</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4.25)</td>
<td>(4.46)</td>
</tr>
<tr>
<td></td>
<td>FE</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Obs.</td>
<td>95225</td>
<td>95225</td>
<td>90015</td>
</tr>
<tr>
<td>Avg R^2</td>
<td>0.017</td>
<td>0.142</td>
<td>0.766</td>
</tr>
</tbody>
</table>
Table A11: Average leverage and labor share

This table presents cross-sectional regressions of each firm’s average leverage over the entire sample, on average labor share (LS). These regressions are the same as those presented in the main text, but here, we also report coefficients associated with all of the controls.

<table>
<thead>
<tr>
<th></th>
<th>LEVM</th>
<th>LEVB</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS</td>
<td>-0.066</td>
<td>-0.043</td>
</tr>
<tr>
<td></td>
<td>(-32.86)</td>
<td>(-19.95)</td>
</tr>
<tr>
<td>σ</td>
<td>0.017</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>(6.48)</td>
<td>(2.49)</td>
</tr>
<tr>
<td>WCTA</td>
<td>-0.280</td>
<td>-0.230</td>
</tr>
<tr>
<td></td>
<td>(-43.91)</td>
<td>(-48.62)</td>
</tr>
<tr>
<td>RETA</td>
<td>0.011</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>(15.32)</td>
<td>(10.89)</td>
</tr>
<tr>
<td>EBITTA</td>
<td>0.029</td>
<td>0.072</td>
</tr>
<tr>
<td></td>
<td>(2.07)</td>
<td>(7.02)</td>
</tr>
<tr>
<td>SaleGr</td>
<td>-0.060</td>
<td>-0.016</td>
</tr>
<tr>
<td></td>
<td>(11.92)</td>
<td>(-4.36)</td>
</tr>
<tr>
<td>NITA</td>
<td>0.021</td>
<td>-0.015</td>
</tr>
<tr>
<td></td>
<td>(2.09)</td>
<td>(2.02)</td>
</tr>
<tr>
<td>CACL</td>
<td>-0.002</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>(7.08)</td>
<td>(-4.55)</td>
</tr>
<tr>
<td>Invest</td>
<td>0.001</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(1.23)</td>
<td>(-0.24)</td>
</tr>
<tr>
<td>R_{exc}</td>
<td>0.084</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>(4.55)</td>
<td>(0.52)</td>
</tr>
<tr>
<td>RSIZE</td>
<td>0.003</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>(0.97)</td>
<td>(3.09)</td>
</tr>
<tr>
<td>R_{m}</td>
<td>0.231</td>
<td>-0.003</td>
</tr>
<tr>
<td></td>
<td>(5.92)</td>
<td>(-0.10)</td>
</tr>
<tr>
<td>MCAP</td>
<td>-0.018</td>
<td>-0.005</td>
</tr>
<tr>
<td></td>
<td>(-6.31)</td>
<td>(-2.17)</td>
</tr>
<tr>
<td>FE</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Obs.</td>
<td>16046</td>
<td>16046</td>
</tr>
<tr>
<td>Avg R²</td>
<td>0.063</td>
<td>0.143</td>
</tr>
</tbody>
</table>
Table A12: Annual observations with non-missing labor expenses and EDF

This table reports the number of annual (firm-year) observations for each individual country. The number of annual observations with non-missing labor expenses (Compustat variable XLR) and the EDF is reported in the column titled “# Obs w XLR/EDF”. The percentage of observations with non-missing labor expenses and EDF is reported for each country (column titled “Within country % of obs w XLR/EDF”). The last column titled “For all countries % of obs w XLR/EDF” presents the percentage of observations with non-missing labor expenses and EDF contributed by each country to the final sample of all observations with non-missing labor expenses, hiring, and EDF (total # of obs = 92553).

<table>
<thead>
<tr>
<th>Country</th>
<th>Start Year</th>
<th>End Year</th>
<th>All # Obs</th>
<th># Obs w XLR</th>
<th># Obs w EDF</th>
<th># Obs w XLR/EDF</th>
<th>Within Country % of obs w XLR/EDF</th>
<th>For all Countries % of obs w XLR/EDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region: Europe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td>1992</td>
<td>2011</td>
<td>1425</td>
<td>1318</td>
<td>981</td>
<td>914</td>
<td>64.14</td>
<td>0.99</td>
</tr>
<tr>
<td>Belgium</td>
<td>1992</td>
<td>2011</td>
<td>1769</td>
<td>1597</td>
<td>1224</td>
<td>1118</td>
<td>63.20</td>
<td>1.21</td>
</tr>
<tr>
<td>Denmark</td>
<td>1992</td>
<td>2011</td>
<td>2244</td>
<td>2048</td>
<td>1457</td>
<td>1347</td>
<td>60.03</td>
<td>1.46</td>
</tr>
<tr>
<td>Finland</td>
<td>1992</td>
<td>2011</td>
<td>1995</td>
<td>1897</td>
<td>1544</td>
<td>1475</td>
<td>73.88</td>
<td>1.59</td>
</tr>
<tr>
<td>France</td>
<td>1992</td>
<td>2011</td>
<td>10855</td>
<td>10055</td>
<td>8105</td>
<td>7597</td>
<td>69.99</td>
<td>8.21</td>
</tr>
<tr>
<td>Germany</td>
<td>1992</td>
<td>2011</td>
<td>11151</td>
<td>10005</td>
<td>7200</td>
<td>6612</td>
<td>59.30</td>
<td>7.14</td>
</tr>
<tr>
<td>Greece</td>
<td>1994</td>
<td>2011</td>
<td>2443</td>
<td>1443</td>
<td>1724</td>
<td>1602</td>
<td>61.02</td>
<td>1.08</td>
</tr>
<tr>
<td>Italy</td>
<td>1992</td>
<td>2011</td>
<td>3631</td>
<td>3425</td>
<td>2584</td>
<td>2448</td>
<td>67.42</td>
<td>2.64</td>
</tr>
<tr>
<td>Netherlands</td>
<td>1992</td>
<td>2011</td>
<td>2756</td>
<td>2607</td>
<td>2085</td>
<td>1919</td>
<td>69.63</td>
<td>2.07</td>
</tr>
<tr>
<td>Norway</td>
<td>1992</td>
<td>2011</td>
<td>3021</td>
<td>2607</td>
<td>1900</td>
<td>1672</td>
<td>55.35</td>
<td>1.81</td>
</tr>
<tr>
<td>Poland</td>
<td>1994</td>
<td>2011</td>
<td>3722</td>
<td>2699</td>
<td>1457</td>
<td>1072</td>
<td>28.80</td>
<td>1.16</td>
</tr>
<tr>
<td>Portugal</td>
<td>1992</td>
<td>2011</td>
<td>857</td>
<td>771</td>
<td>643</td>
<td>585</td>
<td>68.26</td>
<td>0.63</td>
</tr>
<tr>
<td>Spain</td>
<td>1992</td>
<td>2011</td>
<td>2216</td>
<td>2149</td>
<td>1674</td>
<td>1657</td>
<td>74.77</td>
<td>1.79</td>
</tr>
<tr>
<td>Sweden</td>
<td>1992</td>
<td>2011</td>
<td>5712</td>
<td>4798</td>
<td>3041</td>
<td>2644</td>
<td>46.29</td>
<td>2.86</td>
</tr>
<tr>
<td>Switzerland</td>
<td>1992</td>
<td>2011</td>
<td>3485</td>
<td>3176</td>
<td>2378</td>
<td>2195</td>
<td>62.98</td>
<td>2.37</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>1992</td>
<td>2011</td>
<td>26546</td>
<td>21034</td>
<td>18954</td>
<td>16223</td>
<td>61.11</td>
<td>17.53</td>
</tr>
<tr>
<td>Region: North America</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>1992</td>
<td>2011</td>
<td>23575</td>
<td>3228</td>
<td>11908</td>
<td>1769</td>
<td>7.50</td>
<td>1.91</td>
</tr>
<tr>
<td>United States</td>
<td>1992</td>
<td>2011</td>
<td>135632</td>
<td>9588</td>
<td>69610</td>
<td>4877</td>
<td>3.60</td>
<td>5.27</td>
</tr>
<tr>
<td>Region: Japan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>1992</td>
<td>2011</td>
<td>50011</td>
<td>2</td>
<td>42403</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Region: Asia Pacific (ex. Japan)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>1992</td>
<td>2011</td>
<td>19885</td>
<td>11285</td>
<td>12018</td>
<td>7472</td>
<td>37.58</td>
<td>8.07</td>
</tr>
<tr>
<td>China</td>
<td>1992</td>
<td>2011</td>
<td>27448</td>
<td>1210</td>
<td>10755</td>
<td>594</td>
<td>2.16</td>
<td>0.64</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>1992</td>
<td>2011</td>
<td>3468</td>
<td>2363</td>
<td>1812</td>
<td>1244</td>
<td>35.87</td>
<td>1.34</td>
</tr>
<tr>
<td>India</td>
<td>1992</td>
<td>2011</td>
<td>29038</td>
<td>26949</td>
<td>6603</td>
<td>6283</td>
<td>20.99</td>
<td>6.79</td>
</tr>
<tr>
<td>Indonesia</td>
<td>1992</td>
<td>2011</td>
<td>4017</td>
<td>2705</td>
<td>2377</td>
<td>1607</td>
<td>40.00</td>
<td>1.74</td>
</tr>
<tr>
<td>Malaysia</td>
<td>1992</td>
<td>2011</td>
<td>12457</td>
<td>7986</td>
<td>9084</td>
<td>6777</td>
<td>54.40</td>
<td>7.32</td>
</tr>
<tr>
<td>New Zealand</td>
<td>1992</td>
<td>2011</td>
<td>1633</td>
<td>563</td>
<td>1029</td>
<td>435</td>
<td>26.64</td>
<td>0.47</td>
</tr>
<tr>
<td>Philippines</td>
<td>1992</td>
<td>2011</td>
<td>2198</td>
<td>1296</td>
<td>995</td>
<td>651</td>
<td>29.62</td>
<td>0.70</td>
</tr>
<tr>
<td>Singapore</td>
<td>1992</td>
<td>2011</td>
<td>7903</td>
<td>5210</td>
<td>5211</td>
<td>3779</td>
<td>47.82</td>
<td>4.08</td>
</tr>
<tr>
<td>S. Korea</td>
<td>1993</td>
<td>2011</td>
<td>8701</td>
<td>75</td>
<td>5916</td>
<td>49</td>
<td>0.56</td>
<td>0.05</td>
</tr>
<tr>
<td>Taiwan</td>
<td>1992</td>
<td>2011</td>
<td>14520</td>
<td>214</td>
<td>10868</td>
<td>106</td>
<td>0.73</td>
<td>0.11</td>
</tr>
<tr>
<td>Thailand</td>
<td>1992</td>
<td>2011</td>
<td>5749</td>
<td>3171</td>
<td>3240</td>
<td>1978</td>
<td>34.41</td>
<td>2.14</td>
</tr>
<tr>
<td>Region: Other America (ex. Canada and U.S.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td>1992</td>
<td>2011</td>
<td>934</td>
<td>352</td>
<td>667</td>
<td>266</td>
<td>28.48</td>
<td>0.29</td>
</tr>
<tr>
<td>Brazil</td>
<td>1992</td>
<td>2011</td>
<td>4558</td>
<td>2039</td>
<td>671</td>
<td>414</td>
<td>9.08</td>
<td>0.45</td>
</tr>
<tr>
<td>Chile</td>
<td>1992</td>
<td>2011</td>
<td>2171</td>
<td>346</td>
<td>1303</td>
<td>231</td>
<td>10.64</td>
<td>0.25</td>
</tr>
<tr>
<td>Mexico</td>
<td>1992</td>
<td>2011</td>
<td>1674</td>
<td>282</td>
<td>993</td>
<td>145</td>
<td>8.66</td>
<td>0.16</td>
</tr>
<tr>
<td>Region: Middle East</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Israel</td>
<td>1992</td>
<td>2011</td>
<td>2975</td>
<td>2058</td>
<td>1008</td>
<td>735</td>
<td>24.71</td>
<td>0.79</td>
</tr>
<tr>
<td>Pakistan</td>
<td>1994</td>
<td>2011</td>
<td>2814</td>
<td>2833</td>
<td>993</td>
<td>738</td>
<td>26.23</td>
<td>0.80</td>
</tr>
<tr>
<td>Turkey</td>
<td>1992</td>
<td>2011</td>
<td>1905</td>
<td>854</td>
<td>1443</td>
<td>670</td>
<td>35.17</td>
<td>0.72</td>
</tr>
<tr>
<td>Region: Africa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Africa</td>
<td>1992</td>
<td>2011</td>
<td>3761</td>
<td>1893</td>
<td>2330</td>
<td>1254</td>
<td>33.34</td>
<td>1.35</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>451755</td>
<td>157216</td>
</tr>
</tbody>
</table>

63
Table A13: Summary statistics on labor expenses and EDF

This table reports the summary statistics on EDF, labor expenses growth, and labor share. We define labor expenses growth as $\Delta XLR_t = (XLR_t - XLR_{t-1})/[0.5 \times (XLR_t + XLR_{t-1})]$ and labor share as $LS_t = XLR_t/(XLR_t + EBITDA_t)$ for year t. We report the mean and standard deviation of these variables within each country; we also report the same summary statistics for all countries in the last row “Total”.

<table>
<thead>
<tr>
<th>Country</th>
<th>EDF</th>
<th>ΔXLR</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>St.D.</td>
<td>Mean (EW)</td>
</tr>
<tr>
<td>Region: Europe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td>1.57</td>
<td>3.90</td>
<td>0.06</td>
</tr>
<tr>
<td>Belgium</td>
<td>1.25</td>
<td>3.14</td>
<td>0.10</td>
</tr>
<tr>
<td>Denmark</td>
<td>1.34</td>
<td>3.45</td>
<td>0.11</td>
</tr>
<tr>
<td>Finland</td>
<td>1.03</td>
<td>2.79</td>
<td>0.10</td>
</tr>
<tr>
<td>France</td>
<td>1.94</td>
<td>4.15</td>
<td>0.11</td>
</tr>
<tr>
<td>Germany</td>
<td>2.47</td>
<td>5.44</td>
<td>0.09</td>
</tr>
<tr>
<td>Greece</td>
<td>3.71</td>
<td>6.09</td>
<td>0.05</td>
</tr>
<tr>
<td>Italy</td>
<td>1.39</td>
<td>3.22</td>
<td>0.08</td>
</tr>
<tr>
<td>Netherlands</td>
<td>1.30</td>
<td>3.72</td>
<td>0.08</td>
</tr>
<tr>
<td>Norway</td>
<td>2.50</td>
<td>5.50</td>
<td>0.17</td>
</tr>
<tr>
<td>Poland</td>
<td>2.40</td>
<td>4.80</td>
<td>0.08</td>
</tr>
<tr>
<td>Portugal</td>
<td>2.27</td>
<td>4.52</td>
<td>0.08</td>
</tr>
<tr>
<td>Spain</td>
<td>0.85</td>
<td>2.38</td>
<td>0.09</td>
</tr>
<tr>
<td>Sweden</td>
<td>1.73</td>
<td>4.18</td>
<td>0.15</td>
</tr>
<tr>
<td>Switzerland</td>
<td>0.82</td>
<td>2.74</td>
<td>0.09</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>2.07</td>
<td>4.50</td>
<td>0.16</td>
</tr>
<tr>
<td>Region: North America</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>4.14</td>
<td>7.61</td>
<td>0.15</td>
</tr>
<tr>
<td>United States</td>
<td>2.77</td>
<td>6.12</td>
<td>0.10</td>
</tr>
<tr>
<td>Region: Japan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>2.31</td>
<td>4.22</td>
<td>0.13</td>
</tr>
<tr>
<td>Region: Asia Pacific (ex. Japan)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>2.50</td>
<td>5.15</td>
<td>0.27</td>
</tr>
<tr>
<td>China</td>
<td>0.87</td>
<td>1.74</td>
<td>0.24</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>1.79</td>
<td>3.73</td>
<td>0.21</td>
</tr>
<tr>
<td>India</td>
<td>4.00</td>
<td>6.30</td>
<td>0.13</td>
</tr>
<tr>
<td>Indonesia</td>
<td>6.71</td>
<td>9.50</td>
<td>0.14</td>
</tr>
<tr>
<td>Malaysia</td>
<td>2.98</td>
<td>5.43</td>
<td>0.10</td>
</tr>
<tr>
<td>New Zealand</td>
<td>1.63</td>
<td>4.25</td>
<td>0.18</td>
</tr>
<tr>
<td>Philippines</td>
<td>5.67</td>
<td>8.98</td>
<td>0.08</td>
</tr>
<tr>
<td>Singapore</td>
<td>2.39</td>
<td>4.41</td>
<td>0.13</td>
</tr>
<tr>
<td>S. Korea</td>
<td>4.15</td>
<td>6.51</td>
<td>0.12</td>
</tr>
<tr>
<td>Taiwan</td>
<td>1.74</td>
<td>3.29</td>
<td>0.21</td>
</tr>
<tr>
<td>Thailand</td>
<td>3.53</td>
<td>6.76</td>
<td>0.12</td>
</tr>
<tr>
<td>Region: Other America (ex. Canada and U.S.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td>4.31</td>
<td>7.15</td>
<td>0.16</td>
</tr>
<tr>
<td>Brazil</td>
<td>3.68</td>
<td>7.06</td>
<td>0.19</td>
</tr>
<tr>
<td>Chile</td>
<td>1.55</td>
<td>4.17</td>
<td>0.19</td>
</tr>
<tr>
<td>Mexico</td>
<td>2.91</td>
<td>6.12</td>
<td>0.05</td>
</tr>
<tr>
<td>Region: Middle East</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Israel</td>
<td>1.92</td>
<td>4.13</td>
<td>0.16</td>
</tr>
<tr>
<td>Pakistan</td>
<td>5.84</td>
<td>8.93</td>
<td>0.08</td>
</tr>
<tr>
<td>Turkey</td>
<td>1.68</td>
<td>2.81</td>
<td>0.14</td>
</tr>
<tr>
<td>Region: Africa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Africa</td>
<td>3.61</td>
<td>6.97</td>
<td>0.19</td>
</tr>
<tr>
<td>Total</td>
<td>2.56</td>
<td>5.39</td>
<td>0.13</td>
</tr>
</tbody>
</table>
Table A14: Time-series correlation between labor expenses and EDF
This table reports the distribution of the firm-level time-series correlation between labor expenses growth and EDF ($\text{Corr}(\Delta XL\text{R}, \text{EDF})$), and the correlation between labor share and EDF ($\text{Corr}(LS, \text{EDF})$). $\Delta XL\text{R}$ and LS are time t variables, whereas EDF is a $t + 1$ variable. For every firm, we calculate $\text{Corr}(\Delta XL\text{R}, \text{EDF})$ and $\text{Corr}(LS, \text{EDF})$ using its time-series observations. Then we report the mean and standard deviation of these two correlations within each country; we also report the same summary statistics for all countries in the last row “Total”. The t-stat is for testing whether $\text{Corr}(\Delta XL\text{R}, \text{EDF}) = 0$ or $\text{Corr}(LS, \text{EDF}) = 0$.

<table>
<thead>
<tr>
<th>Country</th>
<th>$\text{Corr}(\Delta XL\text{R}, \text{EDF})$</th>
<th>$\text{Corr}(LS, \text{EDF})$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>St.D.</td>
<td>No of firms</td>
</tr>
<tr>
<td>Region: Europe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td>-0.10</td>
<td>0.54</td>
<td>95</td>
</tr>
<tr>
<td>Belgium</td>
<td>-0.00</td>
<td>0.53</td>
<td>115</td>
</tr>
<tr>
<td>Denmark</td>
<td>-0.11</td>
<td>0.44</td>
<td>131</td>
</tr>
<tr>
<td>Finland</td>
<td>-0.08</td>
<td>0.40</td>
<td>135</td>
</tr>
<tr>
<td>France</td>
<td>-0.12</td>
<td>0.50</td>
<td>793</td>
</tr>
<tr>
<td>Germany</td>
<td>-0.11</td>
<td>0.50</td>
<td>701</td>
</tr>
<tr>
<td>Greece</td>
<td>-0.30</td>
<td>0.61</td>
<td>141</td>
</tr>
<tr>
<td>Italy</td>
<td>-0.13</td>
<td>0.46</td>
<td>263</td>
</tr>
<tr>
<td>Netherlands</td>
<td>-0.12</td>
<td>0.50</td>
<td>179</td>
</tr>
<tr>
<td>Norway</td>
<td>-0.11</td>
<td>0.57</td>
<td>199</td>
</tr>
<tr>
<td>Poland</td>
<td>0.01</td>
<td>0.64</td>
<td>191</td>
</tr>
<tr>
<td>Portugal</td>
<td>-0.14</td>
<td>0.56</td>
<td>57</td>
</tr>
<tr>
<td>Spain</td>
<td>-0.07</td>
<td>0.46</td>
<td>151</td>
</tr>
<tr>
<td>Sweden</td>
<td>-0.07</td>
<td>0.53</td>
<td>296</td>
</tr>
<tr>
<td>Switzerland</td>
<td>-0.08</td>
<td>0.47</td>
<td>211</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>-0.05</td>
<td>0.55</td>
<td>1736</td>
</tr>
<tr>
<td>Region: North America</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>-0.06</td>
<td>0.66</td>
<td>257</td>
</tr>
<tr>
<td>United States</td>
<td>-0.10</td>
<td>0.65</td>
<td>671</td>
</tr>
<tr>
<td>Region: Japan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Region: Asia Pacific (ex. Japan)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>-0.01</td>
<td>0.61</td>
<td>1204</td>
</tr>
<tr>
<td>China</td>
<td>0.04</td>
<td>0.58</td>
<td>79</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>0.17</td>
<td>0.53</td>
<td>169</td>
</tr>
<tr>
<td>India</td>
<td>0.00</td>
<td>0.58</td>
<td>1242</td>
</tr>
<tr>
<td>Indonesia</td>
<td>0.07</td>
<td>0.61</td>
<td>213</td>
</tr>
<tr>
<td>Malaysia</td>
<td>-0.04</td>
<td>0.54</td>
<td>863</td>
</tr>
<tr>
<td>New Zealand</td>
<td>0.08</td>
<td>0.73</td>
<td>84</td>
</tr>
<tr>
<td>Philippines</td>
<td>-0.01</td>
<td>0.52</td>
<td>85</td>
</tr>
<tr>
<td>Singapore</td>
<td>0.04</td>
<td>0.55</td>
<td>507</td>
</tr>
<tr>
<td>S. Korea</td>
<td>-0.16</td>
<td>0.96</td>
<td>6</td>
</tr>
<tr>
<td>Taiwan</td>
<td>0.94</td>
<td>1</td>
<td>57</td>
</tr>
<tr>
<td>Thailand</td>
<td>0.06</td>
<td>0.63</td>
<td>278</td>
</tr>
<tr>
<td>Region: Other America (ex. Canada and U.S.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td>0.08</td>
<td>0.66</td>
<td>36</td>
</tr>
<tr>
<td>Brazil</td>
<td>0.10</td>
<td>0.73</td>
<td>73</td>
</tr>
<tr>
<td>Chile</td>
<td>-0.06</td>
<td>0.86</td>
<td>9</td>
</tr>
<tr>
<td>Mexico</td>
<td>0.15</td>
<td>0.80</td>
<td>28</td>
</tr>
<tr>
<td>Region: Middle East</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Israel</td>
<td>-0.13</td>
<td>0.59</td>
<td>104</td>
</tr>
<tr>
<td>Pakistan</td>
<td>-0.04</td>
<td>0.52</td>
<td>97</td>
</tr>
<tr>
<td>Turkey</td>
<td>0.19</td>
<td>0.61</td>
<td>102</td>
</tr>
<tr>
<td>Region: Africa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Africa</td>
<td>-0.02</td>
<td>0.65</td>
<td>175</td>
</tr>
<tr>
<td>Total</td>
<td>-0.04</td>
<td>0.57</td>
<td>11677</td>
</tr>
</tbody>
</table>
Table A15: Time-series correlation between labor expenses and debt growth

This table reports the distribution of the firm-level time-series correlation between labor expenses growth and debt growth ($\text{Corr}(\Delta XLR, \Delta \text{Debt})$), and the correlation between labor share and debt growth ($\text{Corr}(LS, \Delta \text{Debt})$). ΔXLR and LS are time t variables, whereas $\Delta \text{Debt} = \frac{\text{Debt}_{t+1} - \text{Debt}_t}{\frac{1}{2}(\text{Debt}_{t+1} + \text{Debt}_t)}$ is a $t + 1$ variable. For every firm, we calculate $\text{Corr}(\Delta XLR, \Delta \text{Debt})$ and $\text{Corr}(LS, \Delta \text{Debt})$ using its time-series observations. Then we report the mean and standard deviation of these two correlations within each country; we also report the same summary statistics for all countries in the last row “Total”. The t-stat is for testing whether $\text{Corr}(\Delta XLR, \Delta \text{Debt}) = 0$ or $\text{Corr}(LS, \Delta \text{Debt}) = 0$.

<table>
<thead>
<tr>
<th>Country</th>
<th>Mean (Corr($\Delta XLR, \Delta \text{Debt}$))</th>
<th>St.D.</th>
<th>No of firms</th>
<th>t-stat</th>
<th>Mean (Corr($LS, \Delta \text{Debt}$))</th>
<th>St.D.</th>
<th>No of firms</th>
<th>t-stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region: Europe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td>0.02</td>
<td>0.44</td>
<td>111</td>
<td>0.45</td>
<td>-0.08</td>
<td>0.50</td>
<td>121</td>
<td>-1.87</td>
</tr>
<tr>
<td>Belgium</td>
<td>-0.07</td>
<td>0.45</td>
<td>141</td>
<td>-1.71</td>
<td>-0.02</td>
<td>0.46</td>
<td>149</td>
<td>-0.66</td>
</tr>
<tr>
<td>Denmark</td>
<td>0.01</td>
<td>0.47</td>
<td>172</td>
<td>0.35</td>
<td>-0.09</td>
<td>0.46</td>
<td>183</td>
<td>-2.55</td>
</tr>
<tr>
<td>Finland</td>
<td>-0.09</td>
<td>0.40</td>
<td>153</td>
<td>-2.65</td>
<td>-0.13</td>
<td>0.42</td>
<td>161</td>
<td>-3.98</td>
</tr>
<tr>
<td>France</td>
<td>-0.02</td>
<td>0.45</td>
<td>909</td>
<td>-1.52</td>
<td>-0.05</td>
<td>0.45</td>
<td>960</td>
<td>-3.32</td>
</tr>
<tr>
<td>Germany</td>
<td>-0.01</td>
<td>0.48</td>
<td>833</td>
<td>-0.60</td>
<td>-0.07</td>
<td>0.47</td>
<td>876</td>
<td>-4.66</td>
</tr>
<tr>
<td>Greece</td>
<td>0.10</td>
<td>0.55</td>
<td>203</td>
<td>2.56</td>
<td>-0.09</td>
<td>0.47</td>
<td>211</td>
<td>-2.87</td>
</tr>
<tr>
<td>Italy</td>
<td>-0.06</td>
<td>0.45</td>
<td>323</td>
<td>-2.45</td>
<td>-0.04</td>
<td>0.44</td>
<td>341</td>
<td>-1.56</td>
</tr>
<tr>
<td>Netherlands</td>
<td>-0.01</td>
<td>0.46</td>
<td>199</td>
<td>-0.29</td>
<td>-0.13</td>
<td>0.45</td>
<td>215</td>
<td>-4.16</td>
</tr>
<tr>
<td>Norway</td>
<td>0.08</td>
<td>0.57</td>
<td>248</td>
<td>2.25</td>
<td>-0.05</td>
<td>0.58</td>
<td>281</td>
<td>-1.45</td>
</tr>
<tr>
<td>Poland</td>
<td>0.07</td>
<td>0.57</td>
<td>389</td>
<td>2.30</td>
<td>-0.09</td>
<td>0.55</td>
<td>422</td>
<td>-3.20</td>
</tr>
<tr>
<td>Portugal</td>
<td>-0.06</td>
<td>0.50</td>
<td>73</td>
<td>-1.04</td>
<td>-0.04</td>
<td>0.49</td>
<td>77</td>
<td>-0.69</td>
</tr>
<tr>
<td>Spain</td>
<td>-0.01</td>
<td>0.38</td>
<td>171</td>
<td>-0.26</td>
<td>-0.04</td>
<td>0.43</td>
<td>178</td>
<td>-1.24</td>
</tr>
<tr>
<td>Sweden</td>
<td>0.10</td>
<td>0.54</td>
<td>418</td>
<td>3.68</td>
<td>-0.07</td>
<td>0.55</td>
<td>455</td>
<td>-2.60</td>
</tr>
<tr>
<td>Switzerland</td>
<td>0.04</td>
<td>0.44</td>
<td>250</td>
<td>1.27</td>
<td>-0.10</td>
<td>0.40</td>
<td>255</td>
<td>-3.83</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>0.07</td>
<td>0.54</td>
<td>1861</td>
<td>5.39</td>
<td>-0.07</td>
<td>0.56</td>
<td>2084</td>
<td>-5.62</td>
</tr>
<tr>
<td>Region: North America</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>0.12</td>
<td>0.72</td>
<td>231</td>
<td>2.49</td>
<td>-0.05</td>
<td>0.83</td>
<td>488</td>
<td>-1.33</td>
</tr>
<tr>
<td>United States</td>
<td>0.01</td>
<td>0.62</td>
<td>1011</td>
<td>0.54</td>
<td>-0.04</td>
<td>0.63</td>
<td>1233</td>
<td>-2.20</td>
</tr>
<tr>
<td>Region: Japan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Region: Asia Pacific (ex. Japan)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>0.09</td>
<td>0.63</td>
<td>1024</td>
<td>4.60</td>
<td>-0.08</td>
<td>0.61</td>
<td>1142</td>
<td>-4.56</td>
</tr>
<tr>
<td>China</td>
<td>0.07</td>
<td>0.51</td>
<td>153</td>
<td>1.78</td>
<td>0.01</td>
<td>0.51</td>
<td>164</td>
<td>0.30</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>0.02</td>
<td>0.56</td>
<td>318</td>
<td>0.56</td>
<td>-0.01</td>
<td>0.54</td>
<td>336</td>
<td>-0.48</td>
</tr>
<tr>
<td>India</td>
<td>0.05</td>
<td>0.43</td>
<td>2452</td>
<td>5.37</td>
<td>-0.02</td>
<td>0.42</td>
<td>2503</td>
<td>-2.69</td>
</tr>
<tr>
<td>Indonesia</td>
<td>-0.03</td>
<td>0.51</td>
<td>312</td>
<td>-1.13</td>
<td>0.04</td>
<td>0.53</td>
<td>345</td>
<td>1.44</td>
</tr>
<tr>
<td>Malaysia</td>
<td>0.06</td>
<td>0.53</td>
<td>900</td>
<td>3.18</td>
<td>-0.05</td>
<td>0.48</td>
<td>938</td>
<td>-2.92</td>
</tr>
<tr>
<td>New Zealand</td>
<td>0.04</td>
<td>0.58</td>
<td>88</td>
<td>0.72</td>
<td>-0.09</td>
<td>0.59</td>
<td>107</td>
<td>-1.53</td>
</tr>
<tr>
<td>Philippines</td>
<td>0.02</td>
<td>0.53</td>
<td>132</td>
<td>0.42</td>
<td>-0.02</td>
<td>0.52</td>
<td>144</td>
<td>-0.37</td>
</tr>
<tr>
<td>Singapore</td>
<td>0.02</td>
<td>0.55</td>
<td>637</td>
<td>0.83</td>
<td>-0.01</td>
<td>0.48</td>
<td>657</td>
<td>-0.36</td>
</tr>
<tr>
<td>S. Korea</td>
<td>-0.37</td>
<td>0.70</td>
<td>7</td>
<td>-1.40</td>
<td>0.04</td>
<td>0.87</td>
<td>14</td>
<td>0.18</td>
</tr>
<tr>
<td>Taiwan</td>
<td>0.19</td>
<td>0.73</td>
<td>17</td>
<td>1.09</td>
<td>-0.31</td>
<td>0.65</td>
<td>21</td>
<td>-2.14</td>
</tr>
<tr>
<td>Thailand</td>
<td>0.01</td>
<td>0.55</td>
<td>410</td>
<td>0.27</td>
<td>-0.05</td>
<td>0.51</td>
<td>433</td>
<td>-2.16</td>
</tr>
<tr>
<td>Region: Other America (ex. Canada and U.S.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td>-0.13</td>
<td>0.61</td>
<td>47</td>
<td>-1.41</td>
<td>-0.09</td>
<td>0.59</td>
<td>55</td>
<td>-1.12</td>
</tr>
<tr>
<td>Brazil</td>
<td>-0.04</td>
<td>0.57</td>
<td>272</td>
<td>-1.08</td>
<td>-0.09</td>
<td>0.52</td>
<td>294</td>
<td>-3.13</td>
</tr>
<tr>
<td>Chile</td>
<td>-0.02</td>
<td>0.87</td>
<td>93</td>
<td>-0.20</td>
<td>0.06</td>
<td>0.76</td>
<td>117</td>
<td>0.86</td>
</tr>
<tr>
<td>Mexico</td>
<td>0.01</td>
<td>0.75</td>
<td>39</td>
<td>0.06</td>
<td>0.03</td>
<td>0.70</td>
<td>64</td>
<td>0.32</td>
</tr>
<tr>
<td>Region: Middle East</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Israel</td>
<td>0.03</td>
<td>0.61</td>
<td>240</td>
<td>0.83</td>
<td>-0.04</td>
<td>0.60</td>
<td>261</td>
<td>1.16</td>
</tr>
<tr>
<td>Pakistan</td>
<td>0.02</td>
<td>0.56</td>
<td>241</td>
<td>0.53</td>
<td>0.04</td>
<td>0.51</td>
<td>262</td>
<td>1.11</td>
</tr>
<tr>
<td>Turkey</td>
<td>0.02</td>
<td>0.58</td>
<td>127</td>
<td>0.41</td>
<td>0.00</td>
<td>0.62</td>
<td>157</td>
<td>0.10</td>
</tr>
<tr>
<td>Region: Africa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Africa</td>
<td>0.02</td>
<td>0.61</td>
<td>241</td>
<td>0.63</td>
<td>-0.07</td>
<td>0.55</td>
<td>267</td>
<td>-2.03</td>
</tr>
<tr>
<td>Total</td>
<td>0.03</td>
<td>0.53</td>
<td>15447</td>
<td>7.47</td>
<td>-0.05</td>
<td>0.53</td>
<td>16972</td>
<td>-11.90</td>
</tr>
</tbody>
</table>

66