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Abstract
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The role of speculation in driving asset prices has long been a topic of debate among

economists (Keynes, 1936; Fama, 1970; Shiller, 1981; Black, 1986; Cochrane, 2011).1 Modern

empirical work on “speculative dynamics” begins with Cutler et al. (1991), who document

short-run momentum and long-run reversals in the prices of many diverse assets. These

patterns are especially strong during asset “bubbles,” which have drawn attention due to

their frenzied activity and subsequent social costs (Kindleberger, 1978; Shiller, 2005; Glaeser,

2013). Uncovering the mechanisms responsible for such episodes is critical for guiding policy.

Several distinct theories have been offered to explain these asset pricing facts.2 This paper

sheds new light on this topic by exploring a less studied feature of asset market bubbles—the

speculative dynamics of volume. Large movements in transaction volume frequently accom-

pany price cycles (Genesove and Mayer, 2001; Hong and Stein, 2007), yet many theories

of bubbles ignore implications for volume. Furthermore, the leading explanation of volume

during bubbles—disagreement over asset values—is silent on the dynamic relationship be-

tween prices and volume, suggesting only that volume and mispricing should be correlated

(Scheinkman and Xiong, 2003).

We present a model of the joint speculative dynamics of prices and volume during bub-

bles. Following past work (De Long et al., 1990; Barberis et al., 2015), the model features

extrapolative expectations: investors expect prices to increase following past increases. The

model departs from past work in two ways. First, instead of the standard dichotomy between

feedback traders and rational arbitrageurs, investors differ only in their expected investment

horizon. Some buyers plan to sell after one year, while others plan to hold for many years.

The second departure is to specify a term structure for extrapolation. In particular, ex-

trapolation declines with the forecast horizon, so that short-run expectations display more

sensitivity than long-run expectations to past prices. When this term structure holds, past

1Harrison and Kreps (1978, p. 323) define speculation in the following way: “Investors exhibit speculative
behavior if the right to resell a stock makes them willing to pay more for it than they would pay if obliged
to hold it forever.”

2These theories include Cutler et al. (1990), De Long et al. (1990), Daniel et al. (1998), Barberis et al.
(1998), Hong and Stein (1999), Abreu and Brunnermeier (2003), and Piazzesi and Schneider (2009).
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price growth disproportionately attracts short-horizon investors, who in turn generate excess

volume when they sell.

Section 1 presents empirical support for both of these departures. Prior work estimating

extrapolative expectations finds that short-run future expectations display more sensitiv-

ity to past price movements than long-run future expectations (Graham and Harvey, 2003;

Vissing-Jorgensen, 2004; Armona et al., 2016). In survey evidence from the National Asso-

ciation of Realtors, expected holding times vary considerably across buyers in the housing

market. Furthermore, the share of respondents reporting an expected holding time less than

3 years commoves strongly with recent house price appreciation.

These facts motivate the model in Section 2, which studies a housing market populated

by extrapolative investors with heterogeneous horizons. In the model, potential buyers arrive

each instant and decide whether to buy a house. If they buy, they must hold the house for

some period, after which they are free to sell. Both the expected duration of this period

as well as the flow utility received during it vary across potential buyers. Potential buyers

expect to sell immediately upon the period’s expiration at the prevailing price of housing.

The price of housing reacts sluggishly to changes in the number of potential buyers who

wish to buy. This “price stickiness” combines with extrapolative expectations to generate

positive feedback between price growth and demand that causes bubbles.

Section 3 studies the joint dynamics of prices and volume by analytically characterizing

the response of these variables to a one-time demand shock. Heterogeneity in expected

holding periods interacts with extrapolative expectations to produce a rich volume dynamic.

We partition the time following the shock into three epochs: a “boom” in which prices rise,

volume rises, and all listings sell; a “quiet” in which prices continue to rise, but volume

falls and unsold listings accumulate; and a “bust” in which prices fall on low volume. The

composition of buyers and sellers varies over the cycle because past buyers are future sellers;

time-varying investor composition links volume and prices across periods.

The model focuses on the housing market because data availability allows us to test
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directly the model’s predictions about the composition of buyers and sellers. Between 2000

and 2005, house prices in the US doubled while monthly transaction volume rose 40%. Prices

and volume fell sharply over the next five years (Figure 1). The quiet describes the time

between 2005 and 2007 shown in Figure 1 during which volume sharply fell, inventories of

unsold listings sharply rose, and prices increased or stayed roughly stable. A similar dynamic

appears in other episodes, such as the tech bubble in the US in the late 1990s (Hong and

Stein, 2007) and the bubbles in experimental markets explored by Smith et al. (1988).

We prove that the booms in prices and volume are larger when the frequency of potential

buyers with short horizons is greater. This finding ties together prices and volume during

bubbles by demonstrating that a single factor is responsible for movements in both. Using

the empirical literature on extrapolative expectations and the survey evidence on expected

holding times, we calibrate our model and find that the marginal effect of short-term potential

buyers on the price and volume booms is quantitatively large and first-order relevant for

explaining aggregate price and volume dynamics.

Section 4 evaluates the model’s predictions using transaction-level data from the housing

market in the US between 1995 and 2014 for 115 cities that represent approximately 50%

percent of the US population. We present four key facts. First, 42% of the rise in home

sales between 2000 and 2005 is due to the increase in sales of homes held for less than 3

years. Second, more than half of the rise in sales comes from buyers who did not occupy

the property, as suggested by information on the transaction deed. This finding supports

the model because it is consistent with the prediction that buyers with low flow utility

from housing respond most strongly to expected capital gains and because self-identified

“investors” report shorter expected holding times in surveys. Third, volume leads prices

with a lag of 15 months in a monthly panel at the metropolitan-area level. Last, the 2000-

2012 US house price cycle was larger in metropolitan areas in which the level of existing

sales as a share of the housing stock in 2000 was greater. As shown in our model, a higher

frequency of short-term buyers increases both steady-state volume and the amplitude of the
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price response to the demand shock.

Taken together, the findings lend strong support to the model we present. More broadly,

this paper offers new stylized facts about speculative dynamics that expand the set of mo-

ments a theory of asset price cycles should match. Two recent papers model volume during

bubbles as the outcome of time-varying disagreement. In Barberis et al. (2016), the extent

to which investors “waver” between extrapolation and fundamentalism depends on the ex-

tent of mispricing, and in Burnside et al. (2016) disagreement varies as optimism diffuses

through the population via random meetings. Although investors in our model all hold

the same belief, their willingness-to-pay for the asset varies according to their investment

horizons. Both time-varying disagreement and heterogeneous expected holding times likely

explain important aspects of the joint dynamics of prices and volume.

1 Motivating Evidence

1.1 The Term Structure of Extrapolative Expectations

Much of the early theoretical work on extrapolative expectations is silent on the forward term

structure of extrapolation (De Long et al., 1990; Cutler et al., 1990; Barberis and Shleifer,

2003). The two papers we are aware of that explicitly model how past price changes are

extrapolated into expectations of future prices at varying horizons are Barberis et al. (2015)

and Glaeser and Nathanson (2016).3 In both papers, extrapolation is modeled in a way that

leads short term expectations to exhibit more sensitivity to recent price changes than long

term expectations. This approach, which we adopt in our model, is supported by a growing

body of empirical evidence suggesting that past asset returns do indeed influence annualized

expected capital gains more strongly over short versus long future horizons.

In the housing market, Armona et al. (2016) survey expected capital gains over 1- and 5-

3Hong and Stein (1999) assume that past price changes are extrapolated linearly into a fixed future
horizon, but their model does not deliver predictions about the effects of recent price changes on expectations
at differing future horizons.
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year horizons and relate those expectations to perceptions of recent local price changes. They

find that 1-year ahead expectations are nearly five times more sensitive to perceived past price

changes than annualized 2-5 year ahead expectations.4 Furthermore, when provided with

new information about local changes in house prices over the last year, respondents in the

survey update their forecasts of 1-year price gains more strongly than their 2-5 year forecasts.

Both of these facts suggests that short-run house price expectations display significantly more

sensitivity to past returns than do long-run expectations.

Similar evidence exists for the US stock market. Vissing-Jorgensen (2004) reports the

average expectation of annualized stock market returns over 1- and 10-year horizons among

respondents to the UBS/Gallup Index of Investor Optimism survey between 1998 and 2002.

Over this period, 1-year expectations moved closely with recent price changes—first rising

from 10% to 16% as stock prices increased, and then falling to 6% as prices fell. In contrast,

10-year expectations remained relatively constant over this period and were uncorrelated

with the large contemporaneous movements in the stock market.

These patterns persist even in a sample of more sophisticated survey respondents. The

Duke CFO Global Business Outlook, which surveys chief financial officers of US firms, pro-

vides data on annualized 1- and 10-year stock return expectations. Graham and Harvey

(2003) use data from the 2000-2003 waves of this survey and find that the 1-year expected

risk premium (expected return less treasury yield) is positively and significantly related to

excess returns over the previous week, month, two months, and quarter, whereas the 10-year

annualized expected risk premium is slightly negatively related to these past returns. In

Appendix Table A1, we use the survey data from 2000-2011 and confirm that the 1-year ex-

pectations remain more sensitive to past returns than the 10-year expectations in the longer

4The coefficient when regressing 1-year expectations on past 1-year price growth perceptions equals 0.262
(0.029), whereas the coefficient when regressing the implied 2-5 year annualized expectations on 1-year
perceptions equals 0.058 (0.012). Case et al. (2012) conduct a similar survey and report the 1- and 10-
year annualized capital gains expectations for the housing market at the city-year level. Using CoreLogic
county house price indices and their survey data, we find a coefficient of 0.25 (0.02) when regressing 1-year
expectations on the past year’s house price appreciation and a coefficient of 0.16 (0.04) when regressing the
annualized 10-year expectations on the past year’s house price appreciation.
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sample.5 Thus, the available evidence all points toward a term structure for extrapolation in

which short-run forecasts are more sensitive to recent prices changes than long-run forecasts.

1.2 Variation in Expected Holding Times

In the presence of a downward sloping term structure for extrapolative expectations, our

model implies that recent price changes will differentially draw in short-term investors who

amplify volume by selling more frequently and destabilize prices through positive feedback.

The magnitude of these effects will depend on the degree of heterogeneity in the distribution

of expected holding times among prospective investors. While not much data are available

concerning the expected holding times of investors, the best data we are aware of, which

come from the housing market, suggest that investment horizons vary considerably across

individuals and commove strongly with recent price changes.

Each March, as part of the Investment and Vacation Home Buyers Survey, the National

Association of Realtors (NAR) surveys a nationally representative sample of around 2,000

individuals who purchased a home in the previous year. The survey asks respondents to

report the type of home purchased (investment property, primary residence, or vacation

property) as well as the “length of time [the] buyer plans to own [the] property.” Data on

expected holding times and the share of purchases of each type are available for 2006-2015

(2008-2015 for primary residences).

Figure 2 documents the substantial cross-sectional heterogeneity in expected holding

times among respondents to the survey.6 Each bar reports an equal-weighted average of the

share of recent buyers who report a given expected holding time across survey years. Averages

are reported separately by property type. Two things stand out. First, the vast majority of

5Although the data are available from 2000-2016, we use only 2000-2011 to match the window used by
Greenwood and Shleifer (2014), who also find a coefficient of about 0.03 when regressing the 1-year return
expectation on the prior year’s return. Interestingly, the coefficients decline considerably when the 2012-2016
sample is included, possibly because declines in interest rates over this time both increased lagged returns
and decreased future return expectations.

6The bins in Figure 1 are those used by the NAR in its data release (we do not have access to less
aggregated data). We reclassify respondents who have already sold their properties as having an expected
holding time in [0,1).
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recent homebuyers (roughly 80%) report knowing what their expected holding time will be.

Second, there is wide variation in expected holding times among those who report. About

half of the expected holding times are between 0 and 11 years and are distributed somewhat

uniformly over that range. The survey question groups the remaining half of the responses

into a single expected holding time of greater than or equal to 11 years; however, there

may be substantial variation within that group as well. Expected holding times also vary

in an intuitive way across property types. Recent buyers of investment properties report

substantially shorter expected holding periods than recent buyers of primary residences or

vacation homes.

There is also significant variation in the time series. To demonstrate this, we construct

a “short-term buyer share,” which is measured as the fraction of respondents who report an

expected holding time of less than 3 years or had already sold their property by the time

of the survey.7 Across survey years, the short-term buyer share varies from 26% to 41% for

investment properties, from 10% to 22% for primary residences, and from 12% to 34% for

vacation properties. The weighted average of the short-term buyer share across property

types varies from 13% to 26%.

This variation over time is not random. Rather, the short-term buyer share moves closely

with recent price appreciation in the housing market. A simple regression of the pooled

short term buyer share on the equal-weighted average year-over-year change in the nominal

quarterly FHFA US house price index during the survey year yields a statistically significant

coefficient estimate of 0.81. This implies that a recent nominal gain of 10% in house prices is

associated with an increase in the short-term buyer share of roughly 8.1 percentage points.

The nominal house price appreciation in the US in 2005 was equal to 11% and was much

larger in some metropolitan areas. Thus, changes in house prices over the last cycle may have

induced significant shifts in the distribution of expected holding times among homebuyers at

different points in the cycle. We will investigate this hypothesis below using detailed micro-

7In constructing this measure, we leave out those who report that they do not know their expected holding
time.
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data that allows us to construct disaggreagated measures of holding times across markets

and time periods. Before doing so, however, we first present our model, which is motivated

by the evidence just discussed.

2 A Model of Investors with Heterogeneous Horizons

2.1 Primitives and Information Environment

We present an infinite-horizon, continuous-time model of a city with a fixed amount of

perfectly durable housing, normalized to have measure one. Agents go through a life cycle

with three possible phases: potential buyer, stayer, and mover.

In each instant, agents arrive. Each agent begins as a potential buyer and must decide

between buying a home immediately and leaving the city forever. A potential buyer who

buys a home becomes a stayer. Stayers receive flow utility δ > 0 from living in the city

until receiving an idiosyncratic taste shock and becoming movers. This taste shock arrives

with an instantaneous Poisson hazard λ > 0, which is distributed across potential buyers

independently from δ and according to a time-invariant probability density function f(λ).

For any δ0 > 0, the measure of agents arriving at t for whom δ ≥ δ0 equals Atδ
−ε
0 , where

ε > 0 and
∫∞
0
λεf(λ)dλ exists.

Potential buyers and movers maximize the present value of lifetime utility by choosing

whether to buy or list, respectively. Stayers do not sell their homes until becoming movers,

at which point they choose whether to list their homes for sale at the current price Pt. Until

selling, movers decide at each instant whether to list at the current price. Total flow utility

is linear in consumption and in the flow benefit from living in the city, which is nonzero only

for stayers. All agents may borrow or lend at the common discount rate r.

In addition to their individual types and the current price, all agents observe summary

information about the complete history of prices. In particular, there exists a function

ω(·)→ R that maps the history of prices into a single factor observed by market participants
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at time t. We denote this factor by ωt ≡ ω({Pt′ | t′ ≤ t}). Potential buyers and movers use

ωt to form expectations of future prices, which govern their decisions of whether to buy or

list, respectively. Agents form expectations regarding price growth between time t and t+ τ

in a manner that is consistent with the following assumption:

Assumption 1. There exist functions γ and g such that for all δ, λ, τ ≥ 0 and Pt, ωt ∈ R

E[Pt+τ/Pt | δ, λ, Pt, ωt] = 1 + γ(ωt)g(τ) (1)

and the following properties hold:

(a) (g(τ)/τ)′ < 0 for all τ > 0;

(b) g(0) = 0;

(c) γ(ω)g′(0) ≤ r for all ω ∈ R; and

(d)
∫∞
0
e−r

′τg(τ)dτ > 0 for all r′ > r.

Assumption 1(a) endows agents with extrapolative expectations that satisfy the empirical

evidence on the forward term structure presented in Section 1. The decrease of g(τ)/τ is

necessary and sufficient for nontrivial increases in ωt to raise short-term expected capital

gains more strongly than long-term expected capital gains:

Lemma 1. Given (1), Assumption 1(a) holds if and only if

∂2

∂τ∂ωt
E

[
Pt+τ − Pt

τPt
| ωt
]
< 0

for all τ > 0 and ωt ∈ R such that γ′(ωt) > 0.

Assumption 1(b) imposes the weak constraint that E[Pt+τ/Pt] = 1 for τ = 0. Assumption

1(c) is necessary and sufficient for the expected growth rate of prices to always fall below r:

Lemma 2. Given (1) and Assumptions 1(a) and 1(b), E[Pt+τ/Pt | ωt] < erτ for all τ > 0

and ωt ∈ R if and only if Assumption 1(c) holds.
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Finally, Assumption 1(d) guarantees that an increase to γ(ωt) raises the present value of

expected capital gains for all potential buyers.

2.2 Equilibrium Quantities

Solving the model requires knowing the number of agents of each type at each point in time,

as well as the stock of previous listings that did not sell. In particular, we track the number of

potential buyers who decide to buy Dt and the number of stayers St. These jointly determine

the flow of listings Lt, the inventory of unsold listings It, and sales volume Vt.

Due to Lemma 2, Pt > e−rτE[Pt+τ | Pt, ωt] for all t and τ > 0, so movers always choose

to list their homes for sale. As a result, we may describe the evolution of listings using the

stock of stayers of each type λ, or St(λ). Because all new movers list, the flow of listings is

simply the total number of stayers receiving idiosyncratic mover shocks:

Lt =

∫ ∞
0

λSt(λ)dλ. (2)

Given At, Pt, and ωt, a measure Dt of potential buyers decide to buy. If Dt is less than

the number of homes listed for sale, then all interested potential buyers are able to buy.

Otherwise, homes are rationed randomly among the set of interested potential buyers. Let

Dt(λ) denote the measure of potential buyers of type λ who decide to buy. Then sales volume

to potential buyers of type λ equals

Vt(λ) =


Dt(λ) if Lt > Dt or It > 0

Dt(λ)
Dt

Lt if Lt ≤ Dt and It = 0,

(3)

where It is the inventory of unsold listings. The stayer stocks for each λ evolve according to

the law of motion

Ṡt(λ) = Vt(λ)− λSt(λ), (4)
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which is the number of new buyers of type λ less the number of stayers of type λ who become

movers. Unsold listings follow the law of motion

İt = Lt − Vt, (5)

where Vt =
∫∞
0
Vt(λ)dλ equals total sales.

These expressions have two key implications for the dynamics of volume. First, volume

today depends on volume before, as past buyers become current sellers. Second, the number

of listings today depends both on the level of past volume and on the expected holding

periods among past buyers. The larger the number of past buyers with short horizons, the

larger the flow of current listings.

2.3 The Composition of Buyers

The interesting dynamics in the model concern how the composition of buyers—specifically,

the composition of expected holding periods—varies over the cycle. This composition de-

pends on the distribution of λ among buyers. The probability density function of λ among

buyers at time t is given by the function Vt(λ)/Vt. By (3), this function coincides with

Dt(λ)/Dt, the probability density function of demand across potential buyers at t. Thus to

understand how the composition of buyers varies over time, we must calculate the distribu-

tion of demand across λ.

To derive Dt(λ), we assume that potential buyers believe that they will sell their house

as soon as they list it:

Assumption 2. Potential buyers believe that listing movers sell instantaneously.

It may be possible to microfound Assumption 2 as a type of conditional rationality in which

agents believe that “cold” markets are impossible. One consequence of Assumption 2 is that

the expected holding time of a buyer of type λ equals 1/λ. The other consequence is that a

potential buyer of type (λ, δ) tries to buy if the current price is below the present discounted
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value of the flow utility she would receive as a stayer plus the expected resale value of the

house at the time she anticipates becoming a mover. That is, a potential buyer tries to buy

if and only if

Pt ≤
∫ ∞
0

λe−λτ
(∫ τ

0

e−rτ
′
δdτ ′ + e−rτEtPt+τ

)
dτ. (6)

The value of δ at which a buyer of type λ is indifferent implies the equation for demand

given in Lemma 3.

Lemma 3. Demand from each λ type equals

Dt(λ) = f(λ)At︸ ︷︷ ︸
potential
buyer

measure

× (rPt)
−ε︸ ︷︷ ︸

fundamental
demand

× Σλ(ωt)︸ ︷︷ ︸
speculative
demand

,

where

Σλ(ωt) =

(
1− λγ(ωt)

r

∫ ∞
0

e−(r+λ)τg′(τ)dτ

)−ε
. (7)

Demand for each λ is composed of three terms. The first term f(λ)At equals the rela-

tive measure of potential buyers of type λ. The second term, which we call “fundamental

demand,” is a decreasing function of current prices with constant elasticity ε. This term re-

flects the relationship between demand and prices were prices to remain permanently at their

current level. The third term, which we call “speculative demand,” links current demand to

expected capital gains. If buyers expect prices to remain constant, then Σλ(ωt) ≡ 1 and spec-

ulative demand does not magnify total demand. Otherwise, speculative demand magnifies

total demand when buyers expect capital gains and attenuates total demand when buyers

expect capital losses, with the force of this multiplier depending on the buyer’s horizon.

Only speculative demand matters for variation in the composition of buyers over time,

as the other two demand components are always proportional to each other across λ types.

As a consequence, variation in the composition in buyers depends entirely on changes in

expected capital gains. Proposition 1 formally states this relationship:
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Proposition 1. At any ωt such that γ′(ωt) > 0, the following hold for all λ > 0.

(a) Expected capital gains increase demand from all types:

∂ logDt(λ)

∂ωt
> 0.

(b) Short-term (higher λ) buyers are more sensitive to expected capital gains:

∂2 logDt(λ)

∂λ∂ωt
> 0.

(c) Expected capital gains skew the composition of buyers shorter-term:

∂
∫ λ
0
Vt(λ

′)dλ′/Vt

∂ωt
≤ 0,

with equality if and only if | supp f | = 1.

Part (a) formally states that greater expected capital gains increase demand. This effect

appears in any user cost model of housing (e.g. Poterba, 1984). The focus in most user cost

models is primarily the intensive margin demand for housing capital. Our model highlights

the extensive margin instead, as the stimulative effect of expectations on demand operates

entirely through drawing new buyers into the market. Consistent with this mechanism,

Agarwal et al. (2015) document increased participation in the owner-occupied housing market

in response to rising prices.

The extensive margin effect also predicts that expected capital gains stimulate demand

more for buyers with low flow utility. Buyers with high flow utility are off the margin, so

variation in ω does not impact their decision to buy. Consistent with that observation, in

Section 4 we document a large increase in investor participation in the US housing market

during the 2000-2006 boom. Investors receive less flow utility than owner-occupants because

in a competitive market, the rent received by landlords reflects the flow utility of the marginal

renter; in contrast, most owner-occupants are infra-marginal. Investors also receive less flow
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utility than owner-occupants due to frictions that arise from the separation of ownership of

control (Nathanson and Zwick, 2015).

Part (b) shows that the stimulative effect of capital gains is stronger for buyers with

shorter expected holding times. Buyers looking to make a “quick buck” are drawn to rising

prices more than those buying for the long run. The proof of Proposition 1 shows that

this effect follows from the higher sensitivity of short-term expectations to ωt embodied by

Assumption 1(a).

Part (c) links expected capital gains to the composition of buyers. Because short horizon

buyers are more sensitive to capital gains, an increase in expected capital gains skews the

composition of buyers towards those with shorter holding times. Proposition 1(c) explains

the evidence presented in Section 1 that both expected capital gains and the short-term

buyer share respond strongly to recent home price appreciation.

Proposition 1 illustrates the key mechanism generating time-variation in volume in the

model, namely, time-variation in the composition of holding periods for buyers and sellers

driven by time-variation in expected returns. To close the model, we now specify how prices

are determined.

2.4 Equilibrium Prices

For notational ease, we define aggregate speculative demand as Σ(ωt) ≡
∫∞
0

Σλ(ωt)f(λ)dλ.

Total demand across all potential buyers can then be expressed as

Dt = At(rPt)
−εΣ(ωt). (8)

Prices are set to ensure that supply equals demand in the long run. That is, all listings sell

(It = 0) and there is no rationing (Dt = Lt). We assume that this adjustment does not

occur instantaneously; rather, prices adjust slowly in response to perceived excess demand.
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Specifically, we assume that the instantaneous change in prices can be expressed as

ṗt = c log(Dt/D), (9)

where pt = logPt, D is a long run demand target, and c > 0 is a constant determining the

rate at which prices adjust to achieve this target. The appendix shows that there exists a

unique value of D given by

D =

(∫ ∞
0

λ−1f(λ)dλ

)−1
(10)

such that a steady state exists in which Lt = Dt, It = 0, and in which potential buyers expect

prices to remain constant. For this reason, we adopt (10) as the demand target relevant for

price adjustment.

Equations (8) and (9) can generate positive feedback wherein an increase to p increases

ω, thereby increasing D and further increasing p. As we show in Section 3, this feedback loop

causes overshooting of prices in response to a demand shock. Sluggish price adjustment allows

us to study the dynamics of unsold listings I by creating the possibility of mismatch between

demand D and listings L. This form of price adjustment is consistent with the empirical

short-run autocorrelation of prices in the housing market (Case and Shiller, 1989; Glaeser

et al., 2014; Head et al., 2014; Guren, 2016) as well as short-run momentum documented in

other asset markets (Cutler et al., 1991; Jegadeesh and Titman, 1993; Asness et al., 2013).

We do not specify the precise mechanism through which c < ∞ might arise and instead

focus on the joint dynamics of prices and volume resulting from it.8

8Samuelson (1947) introduced an equation similar to (9) to model Walrasian tâtonnement. Since then,
a large literature has provided a variety of microfoundations for gradual price adjustment (“sticky prices”),
such as staggered contracts (Calvo, 1983) or information sets (Mankiw and Reis, 2002). See Guren (2016)
for a microfoundation of gradual price adjustment in the housing market.
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3 The Joint Dynamics of Prices and Volume

We use the model in Section 2 to explore the joint dynamics of prices and volume over the

course of a boom-bust cycle. We provide a series of propositions that allow for a qualitative

characterization of the relationship between prices and volume over the cycle. We then turn

to a calibration of the model which allows us to study the potential quantitative relevance

of the factors driving the model.

We focus on how volume and prices respond to a one-time permanent demand shock. In

particular, we study an impulse response around the unique steady state that results from a

single positive shock to the number of potential buyers, At, at a time we normalize to t = 0.

Specifically, At follows the path where At = Ai for t < 0 and At = Af > Ai for t ≥ 0.

To characterize how prices and volume respond to this shock, we impose additional

structure on how agents form expectations. We specify both the information that agents

have available to them when they form forecasts of future prices and how that information

influences these forecasts, which are governed in the model by ω(·) and γ(·), respectively.

Following Barberis et al. (2015), we assume that agents observe only a weighted average

of past price changes:

ωt =

∫ t

−∞
µe−µ(t−τ)ṗτdτ, (11)

where the parameter µ > 0 measures the relative weight put on more recent price changes. To

study dynamics, it is useful to know how this average changes in response to an instantaneous

change in prices, which is simply the differential form of (11):

ω̇ = µ(ṗ− ω). (12)

Our specification of ω is sufficiently general that the impulse response may not always

result in a well-behaved boom and bust in prices. In some cases, prices may rise without

falling, or they may oscillate indefinitely. We restrict focus to a parameter region in which a

boom is followed by a bust that asymptotes without indefinitely oscillating. In particular, we
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require γ(·), the function mapping past price information to future expected price changes,

to satisfy the following assumption:

Assumption 3. γ(ω) ≡ 0 for ω ≤ 0, limω→0+ γ(ω) = 0, γ′(ω) > 0 for ω > 0, and

lim
ω→0+

γ′(ω) >
r

min(cε, µ)

(∫ ∞
0

∫ ∞
0

λe−(r+λ)τg′(τ)dτf(λ)dλ

)−1
.

The requirement that γ ≡ 0 for ω < 0 rules out oscillations after the bust, as agents

stop expecting capital gains once the historical average return becomes negative. The rest

of Assumption 3 guarantees that price increases initially beget further increases and that

prices eventually overshoot. With this additional structure, we are now able to provide a

complete characterization of the joint dynamics of prices and volume following the one-time

permanent demand shock.

3.1 The Boom

We begin with a series of three propositions which divide the boom-bust cycle into three

distinct epochs. We refer to these epochs as “the boom,” “the quiet,” and “the bust.”

Proposition 2 presents the conditions that characterize the boom.

Proposition 2. There exists t1 > 0 such that for 0 < t ≤ t1: prices rise (ṗt > 0), prices are

convex (p̈t > 0), expected capital gains increase (ω̇t > 0), demand exceeds listings (Dt > Lt),

and if | supp f | > 1 volume rises (V̇t > 0).

As the proof shows, the shock to A at t = 0 causes demand D to jump above available

listings. As a result, the price of housing begins to increase, and this increase raises ω. The

rise in ω stimulates demand, further increasing prices and leading to convexity in the price

path. Demand rises more sharply for potential buyers with higher values of λ, causing an

increase in listings and hence volume. We define the boom as the time interval (0, t∗1], where

t∗1 is the largest t1 such that the conditions of Proposition 2 hold.
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Proposition 2 fits the 2000-2005 US housing market remarkably well, as shown in Figure

1. Prices and volume rose during this time, with prices rising at an increasing rate. Unsold

inventories increased at the same rate as volume, implying that demand was sufficient to

exhaust the flow of listings and that a stock of unsold listings did not accumulate.

3.2 The Quiet

To continue characterizing the cycle, we provide a lemma that guarantees that prices do not

rise indefinitely:

Lemma 4. There exists (a finite) t2 > 0 such that ṗt2 = 0.

Lemma 4 implies that the boom must end (t∗1 < ∞). It also precludes a price path that

asymptotes to some level without overshooting. We define t∗2 to be the smallest t2 > 0 such

that ṗt2 = 0. Proposition 3 characterizes the time period between t∗1 and t∗2.

Proposition 3. Prices rise (ṗt > 0) for all t ∈ (t∗1, t
∗
2), listings exceed demand (Lt > Dt) for

some t ∈ (t∗1, t
∗
2), and volume falls (V̇t < 0) for some t ∈ (t∗1, t

∗
2).

As can be seen from the price-adjustment equation (9), Dt∗2
equals the long-run level of

demand and listings D. This level represents a decline from the magnitude of demand during

the boom, so demand must fall sometime during (t∗1, t
∗
2). In contrast, listings remain above

this steady-state value because past capital gains continue to lure short-term potential buyers

disproportionately. The combined effect is an excess of listings over demand. Inventories of

unsold listings accumulate by (5), and volume equals demand and hence falls with demand.

Because trading activity is falling, we refer to the time interval (t∗1, t
∗
2] as “the quiet.”

Proposition 3 fits the time between 2005 and 2007 in Figure 1. In 2005, prices reached

at inflection point and began to grow at a slower rate, and volume began to fall. Unsold

inventories then sharply increased as volume continued to decline.
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3.3 The Bust

The final proposition characterizes prices and volume after prices stop rising.

Proposition 4. limt→∞ pt = p0 + ε log(Af/Ai), and for t > t∗2 prices decline (ṗt < 0) and

volume is below steady-state (Vt < D) until this limit is reached.

After the quiet, prices decline on low volume, eventually reaching the steady state level. We

refer to the time interval (t∗2,∞) as “the bust.”9

Genesove and Mayer (2001) document low volume during a bust in the Boston apartment

market and ascribe it to high prices posted by loss-averse sellers trying to avoid nominal

losses. In our setting, low volume during the bust derives from the sticky price adjustment

that states that prices decline whenever demand is low. Low demand holds during the

bust for two reasons: speculative demand is low because expected capital gains are small or

absent, and fundamental demand is low because prices exceed the steady-state value.

The bust corresponds to the period after 2007 shown in Figure 1 during which prices fell

and volume was lower than average.

3.4 Short-Term Buyers and the Size of the Cycle

Propositions 2–4 characterize the relative timing of the price and volume responses. We now

describe the relative magnitude of these responses. In particular, we show that a common

factor—the distribution of expected holding times f(·)—determines the magnitude of the

price and volume responses as well as the level of steady-state volume.

To discuss the size of the price and volume responses, we define Pmax = maxt∈(0,t∗2) Pt and

V max = maxt∈(0,t∗2) Vt to be the largest values of prices and volume attained during the boom

9Prices do not overshoot on the decline because Assumption 3 rules out negative expected capital gains.
This simplifying assumption allows us to highlight the dynamic interactions between the composition of
buyers, volume, and prices during the periods leading to the bust, and how buyer composition can lead to
overshooting as prices rise. Without this assumption, prices would overshoot on the way down, which is a
standard feature of models with extrapolative expectations (e.g., Glaeser and Nathanson, 2016). Empirically,
negative overshooting may occur for a variety of reasons, such as a continuing glut of listed houses (Shleifer
and Vishny, 1992) or foreclosures (Guren and McQuade, 2015).
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and quiet, and we denote the final steady-state price by P∞. The presence of additional

short-term buyers magnifies the price response and steady-state volume:

Proposition 5. An increase to f(·) raises V0 and Pmax while keeping P0 and P∞ constant.

The increase to f(·) is under first-order stochastic dominance, which implies a greater fre-

quency of short-term buyers (those with high λ).

As shown in the proof, a larger f(·) raises steady-state volume V0 and the speculative

demand function Σ(·). The demand of short-term buyers is more sensitive to expected capital

gains, so a greater frequency of such buyers raises aggregate speculative demand. A larger

Σ(·) then increases the maximal price reached during the cycle without changing the steady

states. Proposition 5 makes the empirical prediction that price cycles are larger in markets

with higher steady-state volume; we confirm this prediction in Section 4.

To demonstrate how f(·) jointly determines the magnitudes of the price and volume

responses, we now apply Proposition 5 to a special case in which we compare two markets.

In market A, all potential buyers have the same expected holding time. In market B,

potential buyers differ in their expected holding times, none of which are longer than the

expected holding time in A. The markets are otherwise identical.

Proposition 6. If 1 = | supp(fA)| < | supp(fB)| and fA < fB, then Pmax/P0, P
max/P∞,

V max/V0, and V0 are larger under fB than fA.

Proposition 5 clarifies the importance of volume for understanding asset bubbles in a spe-

cial case. Volume is not a sideshow to prices, but rather a manifestation of the speculative

forces responsible for price dynamics. These speculative forces are captured by the hetero-

geneity in f(·). We conjecture that a mean-preserving spread in f(·) always increases Pmax

and V max while leaving V0 unchanged. Although we are not able to prove this conjecture,

we verify it in our calibration below.
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3.5 Calibration

To study predictions of our model quantitatively, we simulate the impulse response charac-

terized in Propositions 2 through 4. We choose parameter values using surveys and prior

literature to discipline the calibration and ask whether, subject to this parameterization, the

changes in volume and buyer composition are large.

3.5.1 Parameter Choices

Table 1 lists the model parameters and their sources. We calibrate f(·) using the expected

holding times reported in the NAR survey shown in Figure 2.10 To select µ, we rerun

the regression mentioned in Section 1.2 of the short-term buyer share on past house price

appreciation by replacing the lagged four-quarter house price change with ω as given by (11).

We choose µ to maximize the R2 of this regression, leading us to µ = 1.19 (standard error

0.65) and R2 = 67%. This estimate is noisy due to the small amount of data used in the

estimation, but it is close to the value of µ = 0.5 estimated by Barberis et al. (2015) in the

context of the stock market.

To calibrate g(·), we adopt the functional form g(τ) = ρ(1− e−τ/ρ). For all ρ, g′(0) = 1,

so ρ controls the extent to which the initial gain is extrapolated into the future. The half-

life of the cumulative gains implied by g(·) equals ρ log 2, so a larger ρ produces greater

relative sensitivity of long-term expected gains to short-term expected gains.11 In each year

from 2014-2016, the New York Fed’s Survey of Consumer Expectations reports the median

expectation of house price growth in the United States over the next 1 and 5 years (see Fuster

and Zafar, 2015 and Kuchler and Zafar, 2016 for information on this survey). The ratio of

these expectations equals (1 − e−5/ρ)/(1 − e−1/ρ), so we use the sample ratios to obtain a

10We map the expected holding time for each bin to its median, except for [11,∞) which we map to 20.
We then associate λ equal to the inverse of the expected holding time to each bin (e.g. λ = 2 for an expected
holding time of 0.5 years). Using the share of sales to each property type in each year, we calculate f(·)
for each year and then take an equal-weighted average across years to obtain the distribution used in the
calibration.

11The half-life is the value τhl such that g(τhl) = (1/2) limτ→∞ g(τ).
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value of ρ = 20.9 (half-life of 14.5 years). An alternative method is to use the coefficient

estimates from Armona et al. (2016) of the relative sensitivities of 1-year and 5-year forward

capital gains expectations to the prior year’s house price appreciation. By equating these

estimates to g(τ) limω→0+ γ
′(ω) for τ = 1 and τ = 5, we obtain a much smaller number of

ρ = 1.4 (half-life of 1.0 year).12 We use the average of these two numbers as our baseline,

and return to each extreme in the sensitivity analysis.

To calibrate γ(·), we adopt the functional form γ(ω) = r(1 − e−φω/r) for ω > 0. Here

φ > 0 is a free parameter governing the sensitivity of expectations to small increases in ω. As

required by Assumption 1, γ(ω)g′(0) ≤ r for all ω, and as required by Assumption 3, γ′(ω) >

0 for all ω > 0. We use the results of the survey of homeowner expectations conducted by

Case et al. (2012) to estimate φ. Case et al. (2012) report the average expectation of the

next year’s price growth of homeowners in Alameda County (CA), Middlesex County (MA),

Milwaukee County (WI), and Orange County (CA) in the spring of each year from 2003 to

2012. Using the CoreLogic monthly house price indices going back to 1976, we calculate ωt

for each county and year with (11) and our estimate of µ mentioned above. We then choose

φ and a constant to minimize the mean-squared error of g(1)γ(ω) plus this constant versus

the expectation reported by Case et al. (2012). The resulting value is φ = 0.98 (standard

error 0.27).13 Our specification explains 70% of the variance in 1-year expectations across

counties and years in this sample.

We set r = 0.07, which corresponds to a steady-state price-rent ratio of about 1/0.07 =

14. We choose c = 1, which implies a half-life of price adjustment of about 8 months. We

set the elasticity of demand, ε, equal to 0.6, a value in the range of estimates suggested by

Hanushek and Quigley (1980). Finally, for round number convenience, we choose a demand

shock size to match a long-run price impact of 10%. This price impact equals (Af/Ai)1/ε, so

12Armona et al. (2016) calculate the expected 1-year gain, which equals γ(ω)g(1), and the annualized 2-5
year expected gain, which equals (1+γ(ω)(g(5)−g(1))/(1+γ(ω)g(1)))1/4−1. The right derivatives at ω = 0
are g(1) limω→0+ γ

′(ω) and (1/4)(g(5)− g(1)) limω→0+ γ
′(ω). The ratio of these equals (1/4)(g(5)/g(1)− 1),

the value of which uniquely identifies ρ.
13The value of the constant is 0.022 (0.004).
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we set Af/Ai = 1.06: a demand shock of 6%.

3.5.2 Results

The differential equations given by our model allow us to solve for the impulse response in

continuous time. In order to quantify the marginal effects of heterogeneous holding times, we

supplement the baseline model with one in which λ is the same for all potential homebuyers.

We set this value to (
∫∞
0
λ−1f(λ)dλ)−1, the unique value at which steady-state volume

remains unchanged.

Figure 3 displays the resulting impulse responses. Panel (a) plots our two main objects

of study: prices and volume. In the core model, prices significantly overshoot the long-run

cumulative growth of 10%, more than doubling before decreasing to the new level. Initially,

prices are convex, meaning that price changes beget further changes. In contrast, prices

display a much less pronounced boom and bust when expected holding times equal the

average.

In the baseline model, volume rises and then falls, beginning to decline 11 months before

prices. This delay is very close to the empirical delay of 15 months we document below.

The total rise of volume in our simulation equals 22%, a substantial fraction of the 34% rise

in existing sales volume in the US between 2000 and 2005. As shown on the right, volume

remains constant as prices rise when λ is homogeneous.

Panel (b) documents the changing composition of buyers over the cycle. At each time,

we calculate the share of purchases going to buyers whose expected holding time is less than

3 years. In steady state, this share equals 20% (as identified by the NAR survey), and it

rises to a high of 39%. This rise occurs as prices increase, and it drives the concomitant

and subsequent surge in volume. In contrast, no homebuyers have expected holding times

less than 3 years in the homogeneous simulation, as the average holding time (and hence

universal holding time in that case) equals 10.5 years.

Finally, panel (c) documents the evolution of unsold listings over the cycle. Until the
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quiet begins, all listings sell, so unsold listings equal 0. The stock grows as volume begins to

decline. Quantitatively, it reaches 6% of the housing stock in the baseline model, but only

2% when horizons are homogeneous.

In sum, Figure 3 shows that our calibrated model can quantitatively generate large swings

in prices and volume during the boom and quiet periods, a dramatic shift in the composition

of buyers, and a sharp rise in inventories in the period leading to the bust. These features

depend critically on heterogeneity in the expected holding times of potential homebuyers.

3.5.3 Sensitivity Analysis

To provide intuition on how the parameters drive the results, we report key statistics of the

simulation under parameters other than our baseline in Table 2. The three statistics we

report are the excess price boom Pmax/P∞ − 1, the volume boom V max/V0 − 1, and the

maximal inventory of unsold listings maxt It. We vary each parameter to a low and high

value while keeping the remaining parameters at the baseline values.

First we vary the degree of heterogeneity in f(·). In the “high” treatment, we keep

steady-state volume (
∫∞
0
λ−1f(λ)dλ)−1 constant but put all the mass in f(·) on the most

extreme values of λ in its support. The “low” treatment simply replicates the right panel of

Figure 3 in which no heterogeneity exists. The booms in price and volume are much larger

in the high treatment than in the baseline—prices more than quadruple, and volume almost

doubles. Unsold inventories also rise to 18% of the housing stock. These results provide

strong evidence tying together price booms, volume booms, and the distribution of expected

holding times.

Varying the housing demand elasticity produces similar effects. Our low treatment sets

ε = 0.3 (half the baseline), whereas our high treatment sets ε = 1.8 (an average of values

calculated by Diamond, 2016). Prices more than quadruple and volume nearly doubles under

the high elasticity, whereas prices and volume are much more stable under the low treatment.

Short-term buyers enter the market more aggressively when housing demand is more elastic,
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so increasing the elasticity achieves similar results to increasing the frequency of short-term

buyers. The simulation results are less sensitive to variations in the other parameters.

4 Speculative Dynamics in the U.S. Housing Bubble

While the calibration in the previous section allows for an assessment of the potential quan-

titative relevance of the factors that drive our model, their actual empirical relevance has

yet to be established. In this section, we provide empirical evidence linking shifts in the

distribution of realized holding periods over the course of the 2000–2008 US housing cy-

cle to dynamic patterns in volume and prices that directly mirror the patterns implied by

our model. We focus on the housing market both because of its macroeconomic relevance

and because the availability of comprehensive, asset-level microdata permits a uniquely rich

analysis of holding periods and the details of buyers and sellers.

4.1 Data

To conduct our analysis, we use data on individual housing transactions provided by Core-

Logic, a private vendor which collects and standardizes publicly available tax assessments

and deeds records from municipalities across the US. Our main analysis sample spans the

years 1995–2014 and includes data from 115 Metropolitan Statistical Areas (MSAs), which

together represent roughly 50 percent of the US population.

We include all transactions of single-family homes, condos, or duplexes that satisfy the

following filters: (a) the transaction is categorized by CoreLogic as occurring at arm’s length,

(b) there is a non-zero transaction price, and (c) the transaction is not coded by CoreLogic

as being a nominal transfer of title between lenders following a foreclosure. We also drop a

small number of duplicate transactions where the same property is observed to sell multiple

times at the same price on the same day or where multiple transactions occur between the

same buyer and seller at the same price on the same day. These restrictions leave us with
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a final sample of 49,709,319 transactions. Given the geographic coverage of these data and

their source in administrative records, our analysis sample serves as a rough proxy for the

population of transactions in the US during our sample period.

4.2 The Composition of Buyers

The key mechanism that generates time-variation in transaction volume in our model is

that changes in expected capital gains over the course of the housing cycle differentially

attract buyers with shorter-vs-longer expected holding periods. This phenomenon was stated

formally in Proposition 1 and implies that large swings in volume should be accompanied by

equally large changes in the distribution of realized holding periods among those who choose

to sell their homes at various points in the cycle.

As evidence for this prediction, Figure 4 presents a simple yet compelling illustration of

the time variation in realized holding periods during the 2000–2008 US housing cycle. We

define the holding period of each transaction as the number of days since the last transaction

of the same property. We then group all transactions with holding periods less than or equal

to 5 years into bins of 1, 2, 3, 4, or 5 years and count the number of transactions falling into

each bin. Figure 4 plots these bin counts by year for each year between 2000 and 2008.

During the boom years of 2000–2005, there is a clear compression in the distribution

of realized holding periods toward shorter holding periods. This pattern then reverses as

national house prices peak in 2006 and begin to fall in the subsequent years. The increase in

transaction volume at short holding periods during the boom years represents a non-trivial

portion of the overall increase in volume during this period. For example, total volume

across all holding periods (including those greater than 5 years) increased from 2,735,490

transactions in 2000 to 3,817,122 transactions in 2005. During the same period, total volume

in the 1-, 2-, and 3-year bins increased from 471,057 transactions to 921,766, which implies

that these three groups alone can account for 42 percent of the total increase in volume
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between 2000 and 2005.14

This shift in the composition of buyers and sellers toward shorter holding periods during

the boom years correlates highly with changes in total volume across local markets. This

correlation can be seen clearly in Figure 5, which presents scatter plots of the percent change

in total volume at the MSA-level from 2000–2005 versus the percent change in volume

for short holding periods (≤ 2 years) in Panel (a) and long holding periods (> 2 years)

in Panel (b).15 Not only does the growth in volume of short holding period transactions

correlate strongly with the increase in total volume across MSAs during this period, but this

relationship is much stronger for short holding periods relative to long holding periods.

Panel (c) further shows that these cross-sectional differences in the growth rate of short

holding period volume explain a significant portion of the differences in the growth in total

volume across cities during this period. For each city, we plot the change in short holding

period volume divided by initial total volume on the y-axis against the percent change in

total volume on the x-axis. The slope of this line provides an estimate of how much of a

given increase in total volume during this period came in the form of short holding period

volume. The answer is approximately 33 percent. Thus, as predicted by Proposition 1, shifts

in the distribution of holding periods of buyers and sellers over the course of the cycle appear

to be a major determinant of changes in total transaction volume.

Because expected capital gains increase demand through the extensive margin, Propo-

sition 1 additionally predicts that volume increases more strongly in groups of buyers with

low flow utility. While we do not observe flow utility in our data, we do observe whether

each purchased property is owner-occupied. Under the assumption that non-occupants re-

ceive less flow utility than occupants, we further test Proposition 1 by examining whether

non-occupant purchases rose more than occupant purchases from 2000 to 2005.

14This finding is in line with the evidence provided by Bayer et al. (2015), who document a similar increase
in volume among short holding period buyers in the Los Angeles MSA during this period.

15For visual clarity, we group MSAs into 25 equal-sized bins based on their percent change in total volume
during this period and calculate the average percent change in short and long holding period volume in each
of these bins.
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To track the participation of non-owner-occupants in the market over time, we follow

Chinco and Mayer (2016) by marking buyers as non-owner-occupants when the transaction

lists the buyer’s mailing address as being distinct from the property address.16 While this

proxy may misclassify some non-owner-occupants as living in the home if they choose to list

the property’s address for property tax collection purposes, we believe it to be a useful gauge

of the level of non owner-occupied home sales in the market.

Using this proxy, Figure 6 displays plots that are analogous to those in Figure 5 but

use non-owner occupancy as the sorting variable rather than holding periods. Similar to

the patterns we documented for short holding periods, we find that non owner-occupant

volume is an important driver of total volume during the cycle. The top panels compare

volume growth for non owner-occupants and owner-occupants, and show that the relationship

between total volume growth and non owner-occupant volume growth is much stronger. The

bottom panel shows that this growth is also quantitatively important in accounting for total

volume growth. Non owner-occupant volume accounts for more than half of the growth in

total volume across cities.

4.3 The Joint Dynamics of Prices, Volume, and Listings

Propositions 2–4 predict that prices and volume both go through a boom and bust cycle,

with the volume cycle leading the price cycle. In Figure 7, we present evidence that this

relationship holds on average across MSAs in our sample. To do so, we search for the horizon

over which a given change in volume has the most predictive power for the contemporaneous

change in prices at the MSA level. Changes in volume generally lead changes in prices if the

correlation between prices and volume is maximized at a positive lag.

To implement this search, we construct a monthly panel of house prices and total trans-

action volume at the MSA level running from January 1995 to December 2014. Prices equal

16In related work, Haughwout et al. (2011) use an alternative proxy for non-owner-occupancy based on
the number of first-lien mortgages present on an individual’s credit report. They also find a large increase
in non-owner-occupant purchases during this time period.
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the log of CoreLogic MSA-level house price indices, demeaned at the MSA level. Volume

equals the total number of transactions in our data in a given month and MSA divided

by that MSA’s housing stock in the 2000 Census. Because the CoreLogic price indices are

seasonally adjusted, we adjust our volume series by subtracting the MSA-specific average

volume for the relevant calendar month from each observation. Using this panel, we then

run a series of simple regressions of the form

pi,t = βτvi,t−τ + ηi,t, (13)

where p is price, v is volume, i indexes MSAs, and time is measured in months.

The coefficient βτ provides an estimate of how movements in volume around MSA-

calendar month averages at a τ -month lag are correlated with contemporaneous movements

in prices around MSA averages. We run these regressions separately for up to 4 years of lags

(τ = 48) and one year of leads (τ = −12). Figure 7 plots the implied correlation from each

regression along with its 95% confidence interval.17 The correlation is positive at all leads

and lags, but reaches its maximum at a positive lag of approximately 15 months. Thus,

changes in volume generally lead changes in prices by a little over a year.

4.4 Initial Volume and the Size of the Cycle

Proposition 5 shows that an increase to the distribution of expected holding times f(·) raises

both the level of steady-state volume as well as the magnitude of the increase in prices

during the boom and subsequent decreases in prices during the bust. Rather than measure

f(·) directly, we test whether steady-state volume and the amplitude of the price cycle are

positively correlated across cities. Our measure of steady-state volume equals the number of

existing home sales in 2000 as a share of the housing stock. The boom in each city equals the

percentage change in prices between January 2000 and the month in which prices peaked,

17The implied correlation equals ρτ = βτ std(vi,t−τ )/ std(pi,t − pi). Confidence intervals for each estimate
are calculated from standard errors that are clustered at the month level.
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and the bust equals the percentage change between the month of the peak and the month

in which prices reached their lowest level subsequent to the peak month.18

Figure 8 plots the relationship between steady-state volume and the magnitude of the

boom and bust in prices across cities. Panel (a) shows that there is a clear positive rela-

tionship between initial volume and the magnitude of the price boom. Cities with higher

initial volume experienced significantly larger house price booms. As shown in Panel (b),

these cities also experienced more drastic drops in prices following the boom.

Columns 1 and 3 of Table 3 quantify this relationship by reporting coefficient estimates

from simple linear regressions of the price boom (column 1) and bust (column 3) on steady-

state volume. A one percentage point increase in the share of the existing housing stock that

turned over in 2000 is associated with a 15 percentage point higher increase in prices from

January 2000 to peak and a four percentage point larger fall in prices from peak to trough.

In columns 2 and 4, we report analogous and nearly identical estimates from regressions

which instead assume that the boom ended in January of 2006 for all cities. These results

are strongly consistent with the prediction of our model that steady-state volume should be

correlated with the magnitude of swings in house prices during boom-bust episodes.

5 Conclusion

This paper shows that short-term investors have the capacity to destabilize financial markets.

This observation raises two lines of inquiry.

First: do the expansions in credit that accompany asset price booms appeal dispropor-

tionately to short-term investors? Barlevy and Fisher (2011) document a strong correlation

across US metropolitan areas between the size of the 2000s house price boom and the take-

up of interest-only mortgages. These mortgages back-load payments by deferring principal

repayment for some amount of time, and thus might appeal especially to buyers who expect

18We restrict the price peak to occur prior to January 2012 since prices in some markets had already
recovered to levels higher than those experienced during the boom by the end of our sample.
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to resell quickly. The targeting of credit expansions to short-term buyers might explain the

amplification effects of credit availability on asset price booms documented by Di Maggio

and Kermani (2015) Favara and Imbs (2015), and Rajan and Ramcharan (2015).

Second: do policies that aim to achieve financial market stability work better if they

discourage the participation of short-term investors? For instance, consider the financial

transactions tax proposed by Tobin (1978), supported by Stiglitz (1989) and Summers and

Summers (1989), and analyzed theoretically by Dávila (2015). If the incidence of this tax

falls entirely on buyers, then the tax burden is independent of the investment horizon; if the

incidence falls entirely on sellers, then the tax burden is larger in present-value terms for

short-term investors who plan to resell quickly. Our model suggests that transaction taxes

discourage bubbles more powerfully when their incidence falls more strongly on sellers. One

policy that discourages short-term investors more directly is the short-term capital gains

tax, and our model provides a rationale for this policy. Any tax that discourages short-term

investors will also discourage the liquidity provision and, in the case of the housing market,

the residential investment they provide. We hope that future work will weigh all of these

effects to guide policy carefully.
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A Omitted Proofs of Mathematical Statements

Lemma 1

By (1), E[(Pt+τ − Pt)/(τPt) | ωt] = γ(ωt)g(τ)/τ . The cross-partial in Lemma 1 equals
γ′(ωt)(g(τ)/τ)′. Because γ′(ωt) > 0, this cross-partial is negative for all τ > 0 if and only if
Assumption 1(a) holds.

Lemma 2

If Assumption 1(c) fails, then we can find ωt such that γ(ωt)g
′(0) > r. Then E[Pt+τ/Pt |

ωt] − erτ equals 0 at τ = 0 and has a positive derivative with respect to τ at τ = 0, which
means that E[Pt+τ/Pt | ωt] > erτ for some τ > 0. Now suppose Assumption 1(c) holds.
For τ > 0, g(τ) =

∫ τ
0
g′(τ0)dτ0 <

∫ τ
0
g(τ0)/τ0dτ0 < g′(0)τ . As a result, for all ωt ∈ R

E[Pt+τ/Pt | ωt] = 1 + γ(ωt)g(τ) < 1 + γ(ωt)g
′(0)τ ≤ 1 + rτ < erτ . The last inequality follows

because 1 + rτ and erτ coincide for τ = 0 and the derivative of the latter exceeds that of the
former for all τ > 0.

Lemma 3

By (6), a potential buyer buys if and only if

δ ≥ rPt

(
1− λ

r

∫ ∞
0

(r + λ)e−(r+λ)τ
(

E

[
Pt+τ
Pt
| ωt
]
− 1

)
dτ

)
.

Substituting (1) reduces the integral to
∫∞
0

(r + λ)e−(r+λ)τγ(ωt)g(τ)dτ and then integrating

by parts further reduces it to
∫∞
0
e−(r+λ)τγ(ωt)g

′(τ)dτ . The measure of potential buyers at
t of type λ whose flow utility exceeds some δ0 > 0 equals f(λ)Atδ

−ε
0 , so we are done.

Proposition 1

We prove the stronger statement of Proposition 1 in which each derivative with respect
to ωt is replaced by the right-sided derivative ∂+/∂ωt or the left-sided derivative ∂−/∂ωt
throughout. We write the proof in terms of ∂+/∂ωt; the identical proof holds replacing
those partials with ∂/∂ωt. We use this more general form of the proposition in the proof of
Proposition 2.

From Lemma 3, logDt(λ) = log(f(λ)At(rPt)
−ε)+ log Σλ(ωt). Only Σλ(ωt) depends on ω.

We write log Σλ(ωt) = −ε log(1− γ(ωt)i(λ)). From Lemma 2, 1 + γ(ωt)g(τ) < erτ for τ > 0,
so γ(ωt)i(λ) < λ/r

∫∞
0

(r + λ)e−(r+λ)τ (erτ − 1)dτ = 1. For ωt such that ∂+γ(ωt)/∂ωt > 0,
∂+ log Σλ(ωt)/∂ωt = ε(∂+γ(ωt)/∂ωt)i(λ)/(1 − i(λ)) > 0 because i(λ) > 0 by Assumption
1(d). Differentiating again yields ∂∂+ log Σλ(ωt)/∂ωt∂λ = ε(∂+γ(ωt)/∂ωt)i

′(λ)/(1 − i(λ))2.
Integrating by parts and applying Assumption 1(a) yields

ri′(λ) =

∫ ∞
0

e−(r+λ)τg′(τ)dτ −
∫ ∞
0

λe−(r+λ)ττg′(τ)dτ >
r

r + λ

∫ ∞
0

e−(r+λ)τg′(τ)dτ > 0,
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where the final inequality follows because the last integral equals r2/(λ(r + λ))i(λ) > 0.
To prove (c), we first note that Vt(λ)/Vt = Dt(λ)/Dt by (3). By Lemma 3, Dt(λ)/Dt =

f(λ)Σλ(ωt)/
∫∞
0
f(λ′)Σλ′(ωt)dλ

′. Thus, we must show that

∂+
∂ωt

∫ λ
0

Σλ′(ωt)f(λ′)dλ′∫∞
0

Σλ′(ωt)f(λ′)dλ′
≤ 0

for all λ. Differentiating, subtracting parts of the integral that appear on each side, and
multiplying and dividing by σλ′ reduces this inequality to∫ ∞

λ

Σλ′(ωt)f(λ′)dλ′
∫ λ

0

∂+ log Σλ′(ωt)

∂ωt
Σλ′(ωt)f(λ′)dλ′ ≤∫ λ

0

Σλ′(ωt)f(λ′)dλ′
∫ ∞
λ

∂+ log Σλ′(ωt)

∂ωt
Σλ′(ωt)f(λ′)dλ′.

The first part of the proof showed that ∂+ log Σλ(ωt)/∂ωt > 0 and ∂∂+ log Σλ(ωt)/∂ωt∂λ > 0
for all λ. Thus ∂+ log Σλ′(ωt)/∂ωt increases in λ′ and is positive, allowing us to reduce the
inequality to ∫ ∞

λ

Σλ′(ωt)f(λ′)dλ′
∫ λ

0

Σλ′(ωt)f(λ′)dλ′ ≤∫ λ

0

Σλ′(ωt)f(λ′)dλ′
∫ ∞
λ

Σλ′(ωt)f(λ′)dλ′,

which holds with equality. Strict inequality results if and only if ∂+ log Σλ(ωt)/∂ωt is distinct
across two points in the support of f . Because it strictly increases, strict inequality results
if and only if the support of f consists of more than a single point.

Demand Target

Because prices remain constant, Dt = D by (9). Because potential buyers expect prices to
remain constant, σλ(ωt) = 1 for all λ and ωt by (7). Thus, by Lemma 3, Dt(λ)/Dt = f(λ)
for all t. Because Lt = Dt, Vt = Lt by (3), so Vt(λ) = f(λ)D. In a steady state, each St(λ)
remains constant, so St(λ) = Vt(λ)/λ = Df(λ)/λ. Because Vt = Lt, Ut = 0. As a result, the
housing stock is comprised entirely of stayers, so 1 =

∫∞
0
St(λ)dλ = D

∫∞
0
f(λ)/λdλ. Solving

for D provides (10).

Proposition 2

From (11), ωt depends on price changes before t, so ω0 = 0. By (8), D0 = Af/AiD, so by
(9) ṗ0 = c log(Af/Ai) > 0. It follows that ṗt > 0 for t ∈ (0, t1) for some t1 > 0.

By (12), ω̇0 > 0, so ω̇t > 0 for t ∈ (0, t1) for some t1 > 0.
Substituting (8) into (9), differentiating, and using (12) yields p̈/c = −εṗ+σ′(ω)µ(ṗ−ω)
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for ω > 0, where σ(ω) ≡ log Σ(ω). Differentiating yields

σ′(ω) =
εγ′(ω)

∫∞
0

(1− γ(ω)i(λ))−ε−1i(λ)f(λ)dλ∫∞
0

(1− γ(ω)i(λ))−εf(λ)dλ
,

where i(λ) is as defined in the proof of Proposition 1. Taking limits yields limω→0+ σ
′(ω) =

(limω→0+ γ
′(ω))ε

∫∞
0
i(λ)f(λ)dλ > ε/min(cε, µ) by the bound in Assumption 3. It follows

that p̈0 > 0 because ṗ0 > 0 and ω0 = 0, so there exists t1 > 0 such that p̈t > 0 for t ∈ (0, t1).
By (2), Lt depends directly St(λ), and by (4), St(λ) =

∫ t
−∞ e

−λ(t−τ)Vτ (λ)dτ . Therefore Lt
is continuous at 0, so L0 = D < D0 and there exists t1 > 0 such that Dt > Lt for t ∈ (0, t1).

By (3), Vt = Lt when Dt > Lt and It = 0, so to prove that V̇t > 0 we must prove that
L̇t > 0. We have L̇0 =

∫∞
0
λṠ0(λ)dλ. But Ṡ0(λ) = V0(λ)−λS0(λ) = 0 because V (λ) and S(λ)

are continuous at t = 0. So L̇0 = 0. Taking another derivative yields L̈0 =
∫∞
0
λS̈0(λ)dλ.

We have S̈0(λ) = V̇0(λ) − λṠ0(λ) = V̇0(λ). Thus L̈0 =
∫∞
0
λV̇0(λ)dλ. Because ω̇0 > 0, by

Proposition 1(c)
∫ λ
0
V̇0(λ

′)dλ′ ≤ 0 for all λ > 0, so V0(λ) + V̇0(λ) first-order stochastically
dominates V0(λ) as distributions (strictly iff | supp f | > 1). The former must have a larger
mean as a result, so

∫∞
0
λV̇0(λ) > 0, giving L̈0 > 0. Because L̇0 = 0, L̇t > 0 for t ∈ (0, t1)

for some t1 > 0.

Lemma 4

Define p = log(Af )/ε− log(r)− log(D)/ε. Substituting (8) into (9) yields

ṗ = cε(p− p) + cσ(ω). (A1)

Substituting (A1) into (12) gives

ω̇ = µcε(p− p) + µcσ(ω)− µω. (A2)

With the initial conditions p0 = p − log(Af/Ai)/ε and ω0 = 0, (A1) and (A2) specify the
joint dynamics of p and ω. Figure A1 illustrates the corresponding phase diagram.

The ṗ = 0 locus is given by p = p + σ(ω)/ε. For a given ω, ṗ < 0 for p above this locus
and ṗ > 0 for p below this locus. By Assumption 3, σ(ω) = 0 for ω ≤ 0 and σ′(ω) > 0 for
ω > 0, so the ṗ = 0 locus equals p = p for ω < 0 and increases for ω > 0. The ω̇ = 0 locus is
given by p = p+σ(ω)/ε−ω/(cε). For a given ω, ω̇ < 0 for p above this locus and ω̇ > 0 for p
below this locus. For ω < 0, this locus equals a decreasing line, and for ω > 0, this locus lies
beneath the ṗ = 0 locus. The right slope of this locus at 0 equals limω→0+ σ

′(ω)/ε− 1/(cε),
which > 0 because limω→0+ σ

′(ω) > ε/min(cε, µ) as shown in the proof of Proposition 2.
We have drawn the phase diagram such that the ṗ = 0 locus is bounded for large ω and

that the ω̇ = 0 locus asymptotes to a decreasing linear function for large ω. These features
hold as long as σ(ω) is bounded. As shown in the proof of Lemma 2, g(τ) < g′(0)τ for τ > 0,
so i(λ) < (λg′(0)/r)

∫∞
0

(r+ λ)e−(r+λ)ττdτ = (g′(0)/r)λ/(r+ λ). Therefore Assumption 1(c)
implies that σ(ω) < log

∫∞
0

(r/(r + λ))−εf(λ)dλ, which exists because
∫∞
0
λεf(λ)dλ exists.

Tracing the system from the initial point makes it clear that p must decrease in finite
time. At first, p and ω increase. Eventually, the right ω̇ = 0 locus is reached because this
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locus goes to −∞ for large ω due to its linearity. Next, ω begins to increase while p continues
increasing. The right ṗ = 0 locus is then reached because it is bounded from above. After
this point, ω continues decreasing while p begins to decrease, as desired.

Proposition 3

By the definition of t∗2, ṗt > 0 for t ∈ (t∗1, t
∗
2). By (9), Dt∗2

= D. By (3), Vt∗2 ≤ Dt∗2
= D.

Because V0 = D and V̇t > 0 for t ∈ (0, t∗1), there must exist t ∈ (t∗1, t
∗
2) such that V̇t < 0.

Suppose for a contradiction that Lt < Dt for all t ∈ (0, t∗2). Because Dt∗2
= D, by conti-

nuity Lt∗2 ≤ D, so t∗ ≡ inf{t > 0 | Lt = D} exists and t∗ > 0 because Lt > D for t ∈ (0, t∗1).

Because Lt∗ < Dt∗ , Vt∗ = Lt∗ , so (2) and (4) imply that
∫∞
0
Ṡt∗(λ)dλ = 0. If there exists

λ > 0 such that
∫ λ
0
Ṡt∗(λ

′)dλ′ < 0, then the mean value theorem for integrals implies that

L̇t∗ =
∫ λ
0
λ′Ṡt∗(λ

′)dλ′ +
∫∞
λ
λ′Ṡt∗(λ

′)dλ′ > λ
∫ λ
0
Ṡt∗(λ

′)dλ′ + λ
∫∞
λ
Ṡt∗(λ

′)dλ′ = 0, an impossi-

bility due to the infimum property of t∗. Thus
∫ λ
0
Ṡt∗(λ)dλ < 0 for all λ > 0. Given that

ṗt > 0 for t ∈ (0, t∗), ωt∗ > 0, so Vt(λ)/Vt stochastically dominates f(λ) by Proposition 1(c).

Using (4) then yields
∫ λ
0
λ′St∗(λ

′)dλ′ <
∫ λ
0
Vt∗(λ

′)dλ′ < (
∫ λ
0
f(λ′)dλ′)(

∫∞
0
λ′St∗(λ

′)dλ′) for all
λ > 0, so λSt∗(λ)/

∫∞
0
λ′St∗(λ

′)dλ′ stochastically dominates f(λ). Because 1/λ decreases,
it follows that

∫∞
0
St∗(λ)dλ/

∫∞
0
λSt∗(λ)dλ <

∫∞
0
f(λ)/λdλ, so Lt∗ =

∫∞
0
λSt∗(λ)dλ >

(
∫∞
0
λ−1f(λ)dλ)−1 = D because

∫∞
0
St∗(λ)dλ = 1 as Lt < Dt for t ∈ (0, t∗). We have

reached the necessary contradiction.

Proposition 4

The proof of Lemma 4 showed that prices begin to decline when the right ṗ = 0 locus shown
in Figure A1 is reached. After this point, the system moves left so that ṗ < 0. From (9),
Dt < D during this movement. By (3) Vt ≤ Dt, so Vt < D while ṗ < 0.

The price decline continues until either the ω = 0 axis is reached or convergence to (0, p)
occurs. Before either of these events, the system can never fall below the right ṗ = 0 locus,
and any intersection with it occurs for but an instant. As a result, p continues to decrease
until convergence to the steady-state or until ω = 0 but p > p. In the first case, we are
done. In the second case, we know that ω < 0 right after ω = 0 from examining the phase
diagram. It is clear that ω remains below 0 for the rest of time until steady-state is reached,
as the system remains weakly above the left ṗ = 0 locus. In this region, σ(ω) = 0, so (A1)
becomes ṗ = cε(p− p). Thus, ṗ < 0 for the rest of time, as p > p when ω = 0.

Proposition 5

Because V0 = D = (
∫∞
0
λ−1f(λ)dλ)−1, an increase to f(·) increases V0 because 1/λ decreases.

We next show that σ(·) increases pointwise if f(·) increases. We have ∂Σλ/∂λ =
εγ(ω)i′(λ)(1 − i(λ)γ(ω))−ε−1, which equals 0 for ω ≤ 0 and is positive otherwise. An in-
crease to f(·) thus increases σ = log

∫∞
0

Σλf(λ)dλ for ω > 0 and keeps it constant at ω ≤ 0.
We now show that Pmax increases in σ. Pt = Pmax when the system first intersects the

ṗ = 0 locus shown in Figure A1. Because this locus is given by p = p + σ(ω)/ε, it shifts
up for ω > 0 due to an increase in σ. If the path of (p, ω) also shifts to the right, then the
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intersection with this locus must occur at a higher value of p. Thus we prove that the path
does shift to the right. This shift occurs if dp/dω decreases as σ increases. This derivative
equals ṗ/ω̇ = (µ(1 − ω/ṗ))−1. Because ω > 0 and ṗ > 0 before the ṗ = 0 locus is reached,
we must show that ω/ṗ decreases in σ. By (A1), ṗ increases in σ, so we are done.

Finally, we show that P0 and P∞ are independent of f . As shown in the proof of Propo-
sition 4, limt→∞ pt = p, which does not depend on f . The initial condition p0 given in the
proof of Lemma 4 also does not depend on f . Thus σ has no bearing on P0 or P∞.

Proposition 6

Because fA < fB, by Proposition 5 V0 and Pmax are larger under fB while the steady-state
prices P0 and P∞ stay unchanged. Under fA, Lt = λ∗St(λ

∗) ≤ λ∗, where λ∗ is the sole
member of supp fA, and V0 = λ∗. Therefore V max/V0 = 1 under fA. By Proposition 2,
V max/V0 > 1 under fB because | supp fB| > 1.
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FIGURE 1
The Dynamics of Prices, Volume, and Inventories

(a) Prices and Volume (2000–2012)
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(b) Prices and Inventories (2000–2012)
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Notes: These figures display the dynamic relationship between prices, transaction volume, and the inven-
tory of listings in the US between 2000 and 2015. Panel (a) plots monthly prices and sales volume and
panel (b) plots monthly prices and inventory. For prices we use the national CoreLogic single family home
price index, which is based on repeat sales. Inventory information comes from the National Association
of Realtors. For volume, we plot the smoothed, seasonally-adjusted count of transactions in our sample of
115 Metropolitan Statistical Areas. We seasonally adjust volume by removing calendar month fixed effects
and smooth the subsequent series using a three-month moving average. We apply the same smoothing and
seasonal adjustment to inventory levels.
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FIGURE 2
Expected Holding Times of Homebuyers, 2008-2015
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Notes: Data come from the annual Investment and Vacation Home Buyers Survey conducted by the National
Association of Realtors. We reclassify buyers who have already sold their properties by the time of the survey
as having an expected holding time in [0,1). The figure plots the response frequency averaged equally over
each year from 2008 to 2015.
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FIGURE 3
Simulation Results
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Notes: (a) The price when the demand shock occurs is normalized to 1. Volume is in units of share of the
housing stock. (b) Here, “short-term buyer” is defined as one whose expected holding time is less than 2
years. The panel plots the share of such individuals among all buyers. (c) Unsold listings are in units of
share of the housing stock.
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FIGURE 4
The Dynamics of Holding Times in the Housing Market
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Notes: This figure illustrates the time variation in holding periods during the 2000-2008 housing cycle in
the US. For each transaction, we define the holding period as the number of days since the last transaction
of the same property. We then group all transactions with holding periods less than or equal to 5 years into
bins of 1, 2, 3, 4, or 5 years, respectively. For each year between 2000–2008, we plot aggregate transaction
counts in each of these five holding period groups.
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FIGURE 5
The Role of Short Holding Period Volume Growth for Total Volume Growth

(a) Holding Periods ≤ 2 Years (b) Holding Periods > 2 Years
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(c) Contribution of Short Volume to Total Volume Growth

slope = 0.33
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Notes: This figure illustrates of the quantitative importance of short holding period volume in accounting
for the increase in total volume between 2000 and 2005. We present binned scatter plots (“binscatters”) of
the percent change in total volume from 2000–2005 versus the percent change in volume for short holding
periods (≤ 2 years) in Panel (a) and long holding periods (> 2 years) in Panel (b). Panel (c) shows that
the growth in short holding period volume is a quantitatively important component of the growth in total
volume across cities. For each city, we plot the change in short holding time volume divided by initial total
volume on the y-axis against the percent change in total volume on the x-axis.
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FIGURE 6
The Role of Investor Volume Growth for Total Volume Growth

(a) Investors (b) Owner-Occupants
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(c) Contribution of Investor Volume to Total Volume Growth

slope = 0.53
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Notes: This figure illustrates of the quantitative importance of investor volume in accounting for the increase
in total volume between 2000 and 2005. We present binned scatter plots (“binscatters”) of the percent change
in total volume from 2000–2005 versus the percent change in volume for investors (defined as transactions
with distinct mailing and property addresses) in Panel (a) and owner-occcupants (defined as non-investors
or having a missing mailing address) in Panel (b). Panel (c) shows that the growth in investor volume is a
quantitatively important component of the growth in total volume across cities. For each city, we plot the
change in investor time volume divided by initial total volume on the y-axis against the percent change in
total volume on the x-axis.
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FIGURE 7
The Correlation between Prices and Volume at Various Lags

Notes: This figure shows that the correlation between prices and lagged volume is robust across cities and
maximized at a positive lag of approximately 15 months. We regress the demeaned log of prices on seasonally
adjusted lagged volume divided by the 2000 housing stock for each lag from -12 months to 48 months and plot
the implied correlation and its 95% confidence interval calculated using standard errors that are clustered
by month.

47



FIGURE 8
Initial Volume and the Magnitude of the Housing Boom and Bust

(a) Boom
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(b) Bust
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Notes: This figure provides empirical support for the cross-sectional prediction that the magnitude of price
swings during boom-bust episodes should be correlated with the level of steady-state transaction volume
across markets. We present binned scatter plots (“binscatters”) of the percent change in prices from January
2000 to peak (Panel (a)) and from peak to trough (Panel (b)) versus total existing homes in 2000. To facilitate
comparisons across cities of different sizes, we normalize existing sales by the size of the housing stock in
2000 for each city. House prices are measured using the monthly CoreLogic repeat-sales house price indicies.
The price peak for each MSA is measured as the highest price recorded for that MSA prior to January, 2012.
The trough is measured as the lowest price subsequent to the month in which the peak occurred.
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FIGURE A1
Phase Diagram

ω

p

Initial Point

Notes: This figure illustrates the phase diagram for the (p, ω) system specified by equations (A1) and (A2);
p denotes the log house price, and ω denotes the historical average log price change given by equation (11).
The dashed loci indicate points at which either ṗ = 0 or ω̇ = 0. The dotted arrows indicate the directions
p and ω move in each of the four areas demarcated by the dashed loci. The system begins at the marked
point on the p-axis.
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TABLE 1
Calibration Sources

Calibrated
Quantity

Role in Model
Source or Assumed

Value

f(·)
Distribution of

expected holding
times

NAR Investment and
Vacation Home
Buyers Survey

µ

Relative weight in
expectations on

recent price changes
versus those in

distant past

Estimation using
NAR survey

g(·)
Forward term
structure of
expectations

Survey of Consumer
Expectations;

Armona et al. (2016)

γ(·) Extrapolation
function

Estimation using
Case et al. (2012)

survey

r Discount rate 0.07

c Price stickiness 1

ε
Housing demand

elasticity
0.6

Af/Ai Size of demand shock 1.06

Notes: This table lists the model quantities we calibrate to produce Figure 3. Further details are provided
in Section 3.5.
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TABLE 2
Sensitivity of Simulation Results to Parameters

f ρ µ c φ ε Af/Ai r

A. Excess Price Boom

Low 0.30 0.11 0.83 0.40 0.00 0.36 0.92 1.37

Baseline 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04

High 3.31 1.46 0.99 1.48 0.01 3.46 1.17 0.68

B. Volume Boom

Low 0.00 0.04 0.15 0.11 0.00 0.05 0.21 0.26

Baseline 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22

High 0.94 0.26 0.23 0.19 0.00 0.86 0.23 0.17

C. Maximal Unsold Listings

Low 0.02 0.01 0.05 0.04 0.00 0.02 0.06 0.07

Baseline 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06

High 0.18 0.07 0.05 0.05 0.00 0.16 0.06 0.04

Notes: The excess price boom equals Pmax/P∞ − 1, the volume boom equals V max/V0 − 1, and maximal
unsold listings equal maxt It. The alternate values for f ρ, and ε are described in the text. The low and
high values for the remaining parameters are half and double their baseline values (we half and double
log(Af/Ai)).
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TABLE 3
Initial Volume and the Magnitude of the Housing Boom and Bust

Percentage Change in Prices

2000–Peak 2000–2006 Peak–Trough 2006–Trough

Existing Sales/Stock (2000) 15.046*** 14.933*** −4.059*** −4.508***

(3.655) (3.573) (1.120) (1.218)

R2 0.12 0.12 0.12 0.11

Observations 115 115 115 115

Notes: This table reports estimates of the cross-sectional relationship between the magnitude of the housing
boom and bust and initial transaction volume at the MSA level. Each column reports estimates from
a separate regression where the dependent variable is the percentage change in prices measured over the
indicated horizon. Initial transaction volume is measured as total year 2000 existing home sales in each
MSA scaled by the total number of housing units in the MSA as reported in the 2000 Census. House prices
are measured using the monthly CoreLogic repeat-sales house price indicies. The price peak for each MSA
is measured as the highest price recorded for that MSA prior to January, 2012. The trough is measured as
the lowest price subsequent to either the month in which the peak occurred (column 3) or January, 2006
(column 4). In columns 1, 2, and 4, price changes are calculated using the January price level in 2000 and
2006. Heteroskedasticity robust standard errors are reported in parentheses. Significance levels 10%, 5%,
and 1% are denoted by *, **, and ***, respectively.
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TABLE A1
Sensitivity of S&P 500 Return Forecasts to

Historical Returns, 2000Q3 - 2011Q4

Lagged Annual Return History 75-Year Weighted Average

One-Year
Forecast

Ten-Year
Forecast

(Annualized)

One-Year
Forecast

Ten-Year
Forecast

(Annualized)

Historical Return 0.029** −0.013* 0.045*** 0.011
(0.014) (0.007) (0.010) (0.015)

R2 0.12 0.06 0.17 0.03
Observations 44 44 44 44

Notes: Return forecasts come from the Duke CFO Global Business Outlook, a quarterly survey of chief
financial officers of U.S. firms. Historical returns on the S&P 500 come from CRSP’s daily dividend-inclusive
value-weighted return series vwretd. The historical return equals Pt/Pt−1 − 1 in the first two columns and

µ(1− e−µT )−1
∫ T
0
e−µτ ṗt−τdτ in the latter two columns, with p = logP , µ = 0.5, and T = 75. The sample

period is chosen to match that used by Greenwood and Shleifer (2014). Observations for 2001Q3 and 2002Q3
are dropped due to errors or gaps in the Duke CFO Global Business Outlook. Newey-West standard errors
are reported in parentheses. Significance levels 10%, 5%, and 1% are denoted by *, **, and ***, respectively.
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